Two kinematic synergies in voluntary whole-body movements during standing.

J Neurophysiol

Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brazil.

Published: February 2006

We used a particular computational approach, the uncontrolled manifold hypothesis, to investigate joint angle covariation patterns during whole-body actions performed by standing persons. We hypothesized that two kinematic synergies accounted for the leg/trunk joint covariation across cycles during a rhythmic whole-body motion to stabilize two performance variables, the trunk orientation in the external space and the horizontal position of the center of mass (COM). Subjects stood on a force plate and performed whole-body rhythmic movements for 45 s under visual feedback on one of the four variables, the position of the center of pressure or the angle in one of the three joints (ankle, knee, or hip). The Fitts-like paradigm was used with two target amplitudes and six indices of difficulty (ID) for each of the four variables. This was done to explore the robustness of kinematic postural synergies. A speed-accuracy trade-off was observed in all feedback conditions such that the movement time scaled with ID and the scaling differed between the two movement amplitudes. Principal-component (PC) analysis showed the existence of a single PC in the joint space that accounted for over 95% of the joint angle variance. Analysis within the uncontrolled manifold hypothesis has shown that data distributions in the joint angle space were compatible with stabilization of both trunk orientation and COM location. We conclude that trunk orientation and the COM location are stabilized by co-varied changes of the major joint angles during whole-body movements. Despite the strong effects of movement amplitude and ID on performance, the structure of the joint variance showed only minor dependence on these task parameters. The two kinematic synergies (co-varied changes in the joint angles that stabilized the COM location and trunk orientation) have proven to be robust over a variety of tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00482.2005DOI Listing

Publication Analysis

Top Keywords

trunk orientation
16
kinematic synergies
12
joint angle
12
whole-body movements
8
uncontrolled manifold
8
manifold hypothesis
8
joint
8
position center
8
orientation location
8
co-varied changes
8

Similar Publications

Aortic arch anomalies represent a range of congenital vascular malformations resulting from disruptions in the typical embryological development of the aortic arch and its branches. These anomalies, which vary widely in their presentation, can lead to significant clinical symptoms depending on their structure and position. We report the case of a 75-year-old male with intermittent hypertension, palpitations, and episodic warmth in the upper body.

View Article and Find Full Text PDF

Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.

View Article and Find Full Text PDF

Clinically, the rodent thorax is important because of the variety of problems that may affect the heart, lungs, and other thoracic structures. Syrian hamsters are the most common pet and experimental hamster species. Sectional imaging of small mammals is widely increasing in use for clinical and research settings; however, no reports on the thoracic sectional imaging anatomy in this species have been made.

View Article and Find Full Text PDF

CPR related injuries of the chest wall: direct and indirect fractures.

Eur J Trauma Emerg Surg

January 2025

Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Background: Rib and sternum fractures are common injuries associated with cardiopulmonary resuscitation (CPR). The fracture mechanism is either direct by application of force on sternum and anterior ribs or indirect by bending through compression of the thorax. The aim of this study was to determine morphologies of rib fractures after CPR and to reevaluate prior findings on fracture localisation, type and degree of dislocation.

View Article and Find Full Text PDF

Manubriosternal Morphology of Anthropoid Primates.

Am J Biol Anthropol

January 2025

Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, USA.

Objectives: The purpose of this paper is to examine the proportions of the manubrium and sternebrae across anthropoid primates to explore variation hypothesized to be related to thoracic shape and locomotor specialization, and to determine whether the sternoclavicular joint orientation in hominoids reflects hypothesized differences in shoulder joint positioning relative to the thorax.

Materials And Methods: Metric data and sternoclavicular joint orientation data were collected from calibrated photographs of manubria and sternebrae from a large sample (n = 244) of extant anthropoid primates, as well as a small sample of fossil taxa. Manubriosternal and rib cage metric data were also collected from CT scans of an additional 52 extant anthropoid torsos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!