Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fas ligand (FasL/CD95L) is a transmembrane protein belonging to the tumor necrosis factor superfamily that can trigger apoptotic cell death following ligation to its receptor, Fas (CD95/APO-1). Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of antitumor immune effector cells-the "Fas counterattack." However, the ability of FasL to mediate tumor immune privilege is controversial due to studies that indicate FasL has both pro- and anti-inflammatory activities. To resolve this controversy and functionally define the role of FasL in tumor immune evasion, we investigated if suppression of endogenously expressed FasL in colon tumor cells resulted in reduced tumor development and improved antitumor immune challenge in vivo. Specifically, FasL expression in CMT93 colon carcinoma cells was down-regulated following stable transfection with a plasmid encoding antisense FasL cDNA. Down-regulation of FasL expression had no effect on tumor growth in vitro but significantly reduced tumor development in syngeneic immunocompetent mice in vivo. Tumor size was also significantly decreased. Reduced FasL expression by tumor cells led to increased lymphocyte infiltration. The overall level of neutrophils present in all of the tumors examined was low, with no difference between the tumors, irrespective of FasL expression. Thus, down-regulation of FasL expression by colon tumor cells results in an improved antitumor immune challenge in vivo, providing functional evidence in favor of the "Fas counterattack" as a mechanism of tumor immune evasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-05-1462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!