Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have undertaken quantitative binding site studies in order to identify the binding site of the known microtubule destabilizing agents, the tubulyzines, in the tubulin dimer. Two different approaches were employed that utilized the tubulyzines and their derivatives. The first approach was based on a chemical affinity labeling method using tubulyzine affinity derivatives, and the second approach employed the mass spectrometric measurement of the differential reactivity of cysteines using the tubulyzines and monobromobimane. Based on overlapping data from these two approaches, we propose that the tubulyzines bind at the guanosine-5'-triphosphate binding site of beta-tubulin. Interestingly, we also show that the tubulyzines' binding to tubulin induces a conformational change in tubulin that prevents further interaction of the 239Cysbeta with other reagents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1408322 | PMC |
http://dx.doi.org/10.1016/j.bmc.2005.09.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!