Oligodendrocyte precursor cells generate pituicytes in vivo during neurohypophysis development.

Glia

Laboratoire de Neurogenèse et Morphogenèse dans le Développement et chez l'Adulte, CNRS UMR 6156, Université de la Méditerranée, IBDM, Parc Scientifique de Luminy, Marseille, France.

Published: February 2006

In the vertebrate brain, much remains to be understood concerning the origin of glial cell diversity and the potential lineage relationships between the various types of glia. Besides astrocytes and myelin-forming oligodendrocytes, other macroglial cell populations are found in discrete areas of the central nervous system (CNS). They share functional features with astrocytes and oligodendrocytes but also display specific characteristics. Such specialized cells, called pituicytes, are located in the neurohypophysis (NH). Our work focuses on the lineage of the pituicytes during rodent development. First, we show that cells identified with a combination of oligodendrocyte precursor cell (OPC) markers are present in the developing rat NH. In culture, neonatal NH progenitors also share major functional characteristics with OPCs, being both migratory and bipotential, i.e. able to give rise to type 2 astrocytes and oligodendrocytes. We then observe that, either in vitro or after transplantation into myelin-deficient Shiverer brain, pieces of NH generate myelinating oligodendrocytes, confirming the oligodendrogenic potentiality of NH cells. However, no mature oligodendrocyte can be found in the NH. This led us to hypothesize that the OPCs present in the developing NH might be generating other glial cells, especially the pituicytes. Consistent with this hypothesis, the OPCs appear during NH development before pituicytes differentiate. Finally, we establish a lineage relationship between olig1+ cells, most likely OPCs, and the pituicytes by fate-mapping experiments using genetically engineered mice. This constitutes the first demonstration that OPCs generate glial cells other than oligodendrocytes in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.20282DOI Listing

Publication Analysis

Top Keywords

oligodendrocyte precursor
8
astrocytes oligodendrocytes
8
glial cells
8
cells
7
pituicytes
6
oligodendrocytes
5
opcs
5
precursor cells
4
cells generate
4
generate pituicytes
4

Similar Publications

The Rise of Pluripotent Stem Cell-Derived Glia Models of Neuroinflammation.

Neurol Int

January 2025

Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.

Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer.

View Article and Find Full Text PDF

From bench to bedside: US-Japan Collaborative Workshop on the NVU.

J Physiol Sci

January 2025

Department of Neurology, Keio University School of Medicine, Tokyo, Japan.

The joint workshop between U.S. and Japanese researchers, supported by The U.

View Article and Find Full Text PDF

M2 Microglia-Derived Exosomal miR-144-5p Attenuates White Matter Injury in Preterm Infants by Regulating the PTEN/AKT Pathway Through KLF12.

Mol Biotechnol

January 2025

Department of Pediatrics, Zhongda Hospital, The School of Medicine, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.

Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation.

Results: Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!