Glutaraldehyde (GA) fixation has been used for more than 40 years as the preferred treatment to suppress immunogenicity and increase durability of bioprosthetic tissues (BPT) used in heart valve prostheses. This fixative and its reaction products have, however, been implicated in the calcific degeneration and long-term failure of these devices. The current study investigates stabilization of BPT and the mitigation/prevention of calcification by filling aortic wall samples with a synthetic poly(acrylamide) (pAAm) hydrogel, with and without pre-treatment with GA. Histological and gravimetric analysis showed full penetration of the acrylamide (AAm) into the fresh tissue, while only partial filling could be achieved with GA pre-fixed tissue. The observed decrease in amino-group content (0.157+/-0.012-0.123+/-0.021 micromol/mg, p<0.03) and corresponding increase in shrinkage temperature (67.2+/-0.8-78.1+/-1.8 degrees C, p<0.0001) when fresh tissue was filled, indicate the participation of tissue-amines in a process that leads to BPT crosslinking. These effects were much less pronounced when the tissue was pre-fixed with GA. Filling increased the tensile stiffness of fresh tissue (to levels half that of 0.2% GA fixed tissue), but decreased the stiffness of GA pre-fixed tissue. When compared to standard 0.2% GA fixed samples, fresh tissue filled with AAm showed 88% (p<0.0001) less calcification while exhibiting similar resistance toward degradation by protease. Filling did not result in significant decreases in calcification when the tissue was pre-fixed with GA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2005.10.008 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:
Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Department of Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock, AR, USA.
Heart valve replacement is indicated for children with irreparable heart valve disease. These replacements come in a variety of forms including mechanical, xenograft tissue, allograft tissue, and autograft tissue valves. These options each have unique benefits and risks profiles.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFCardiovasc Pathol
December 2024
University Hospital Muenster, Department of Cardiothoracic Surgery, Muenster, Germany.
Objectives: Re-operations due to material degeneration carry a burden for patients with congenital heart disease (CHD). The study aim was to compare rapid vs. slow degeneration of biomaterials in CHD patients.
View Article and Find Full Text PDFKyobu Geka
October 2024
Department of Cardiovascular Surgery, Ichinomiya Nishi Hospital, Ichinomiya, Japan.
The autologous pericardial aortic valve repair technique developed by Ozaki et al., using glutaraldehyde-treated autologous pericardium, has demonstrated superior durability to bioprosthetic valves. However, this technique has certain limitations, including excessive cusp height and cusp fluttering due to leaflet redunduncy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!