Background: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults) that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.
Methods And Findings: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.
Conclusion: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1277929 | PMC |
http://dx.doi.org/10.1371/journal.pmed.0020344 | DOI Listing |
Front Immunol
December 2024
Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Introduction: Malaria remains a significant burden, and a fully protective vaccine against is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail.
View Article and Find Full Text PDFMalar J
December 2024
Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.
Background: Molecular methods play an important role in clinical trials assessing anti-malarial drugs and vaccines, as well as in epidemiological studies aimed at detecting Plasmodium species, especially when dealing with large sample sizes. Molecular techniques are more sensitive and generally have a higher throughput compared to the gold standard microscopy. Further optimization can be achieved with automation of nucleic acid isolation, allowing for rapid and precise extraction.
View Article and Find Full Text PDFPLoS One
December 2024
University of California, San Francisco, CA, United States of America.
Background: Understanding COVID-19's impact on children is vital for public health policy, yet age-specific data is scarce, especially in Uganda. This study examines SARS-CoV-2 seroprevalence and risk factors among Ugandan children at two timepoints, along with COVID-19-related knowledge and practices in households, including adult vaccination status.
Methods: Baseline surveys were conducted in 12 communities from April to May 2021 (post-Alpha wave) and follow-up surveys in 32 communities from November 2021 to March 2022 (Omicron wave).
J Trop Med
December 2024
ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
Malaria remains a significant global health challenge, with the deadliest infections caused by . In light of the escalating drug resistance and the limited effectiveness of available vaccines, innovative treatment approaches are urgently needed. This study explores the potential of the probiotic YZ01, isolated from traditionally fermented kindirmo milk, to modify host responses to ANKA infection.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!