This paper describes synthesis and optical properties of planar clusters of CdSe nanocrystals. The clusters emit linearly polarized light in the plane of the cluster. The emission wavelength of the clusters can be adjusted between 568 and 639 nm with the size of the CdSe nanocrystals. Planar CdSe microclusters were synthesized by reaction of trioctylphosphine oxide-coated CdSe/CdS nanocrystals with 3-aminopropylsilyl-modified Ca(2)Nb(3)O(10) nanosheets in THF. The clusters are 3.92 +/- 1.18 mum length/width and 91 +/- 37 nm thickness, and they consist of alternating layers of Ca(2)Nb(3)O(10) to which CdSe nanocrystals are attached with densities of 5300 +/-310 particles per side of a single Ca(2)Nb(3)O(10) sheet. The chemical inertness of the clusters in coordinating solvents suggests covalent interactions between the aminopropyl groups and CdSe nanocrystals. Upon excitation at lambda(exc) = 400 nm, the clusters emit green (568 nm), orange (589 nm), or red (639 nm) light, depending on the size of the CdSe crystals. The light is emitted preferentially in the cluster plane and it is linearly polarized along the cluster edges. Combined fluorescence microscopy and atomic force microscopy reveal that the directional emission efficiency depends linearly on the thickness of the clusters, which varies between 70 and 180 nm. The ability to manipulate the direction and polarization of the photoemission of CdSe nanoparticles via assembly into 2D structures is of interest for applications of these and similar structures in advanced optical materials and devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0541377 | DOI Listing |
Nanoscale
January 2025
4109 Newman & Wolfrom Laboratory, 100 W 18th Ave, Columbus, OH 43210, USA.
A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Liège, Belgium.
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
The utilization of excited charge carriers in semiconductor nanocrystals (NCs) for optoelectronic technologies has been a long-standing goal in the field of nanoscience. Experimental efforts to extend the lifetime of excited carriers have therefore been a principal focus. To understand the limits of these lifetimes, in this work, we theoretically study the time scales of pure electron relaxation in negatively charged NCs composed of two prototypical materials: CdSe and CdS.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil.
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!