Ag(I) and Cu(II) complexes of a series of simple bis(urea) ligands form soft metallogels. X-ray crystallographic results suggests that the gels' structure is based on hydrogen bonding to counter anions and thus suggests a route to tunable gel rheological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b511259aDOI Listing

Publication Analysis

Top Keywords

modular nanometer-scale
4
nanometer-scale structuring
4
structuring gel
4
gel fibres
4
fibres sequential
4
sequential self-organization
4
self-organization agi
4
agi cuii
4
cuii complexes
4
complexes series
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Controlled tailoring of atomically thin MXene interlayer spacings by surfactant/intercalants (e.g., polymers, ligands, small molecules) is important to maximize their potential for application.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are nanometer-scale organelles with a protein-based shell that serve to co-localize and encapsulate metabolic enzymes. They may provide a range of benefits to improve pathway catalysis, including substrate channeling and selective permeability. Several groups are working toward using BMC shells as a platform for enhancing engineered metabolic pathways.

View Article and Find Full Text PDF

Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and spatial analysis is necessary. Here we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation. The procedures are aimed at researchers in the life sciences with modest computational expertise, who use volume electron microscopy and need to generate three-dimensional (3D) segmentation labels for different types of cell organelles while minimizing manual annotation efforts, to analyze the spatial interactions between organelle instances and to visualize the 3D segmentation results.

View Article and Find Full Text PDF

De novo protein design of photochemical reaction centers.

Nat Commun

August 2022

Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA.

Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!