Phospholipid scramblase 1 (PLSCR1), a calcium-binding protein that either inserts into the plasma membrane or binds to genomic DNA in the nucleus, has been shown to contribute to the cell proliferation, differentiation, and apoptosis as well as antiviral activity of interferon (IFN). The expression of PLSCR1 protein is also known to be markedly increased in response to IFN and to some differentiation inducing agents such as all-trans retinoic acid, but the precise mechanisms of this response remain to be investigated. In this study, we show that the protein kinase Cdelta (PKCdelta)-specific inhibitor rottlerin and the dominant negative mutant of PKCdelta significantly antagonized IFN-induced PLSCR1 expression. The influence of PKCdelta on IFN-mediated induction of PLSCR1 was dependent upon the phosphorylation of STAT1 at Ser-727. Furthermore, PKCdelta-mediated activation of STAT1 required the activation of JNK, as the inhibition of JNK activity by its specific inhibitor or transfection of its dominant negative mutant suppressed both serine phosphorylation of STAT1 and PLSCR1 expression but not the activation of PKCdelta. In conclusion, our results suggest that the induction of PLSCR1 transcription through STAT1 depends upon sequential activation of PKCdelta and JNK.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M506178200DOI Listing

Publication Analysis

Top Keywords

phospholipid scramblase
8
sequential activation
8
protein kinase
8
kinase cdelta
8
dominant negative
8
negative mutant
8
plscr1 expression
8
induction plscr1
8
phosphorylation stat1
8
activation pkcdelta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!