The p38 mitogen-activated protein kinase regulates effector functions of primary human CD4 T cells.

Eur J Immunol

Nikolaus Fiebiger Center for Molecular Medicine, Clinical Research Group III, University of Erlangen-Nuremberg, Erlangen, Germany.

Published: December 2005

The role of p38 mitogen-activated protein kinase in primary human T cells is incompletely understood. We analyzed in detail the role of p38 in the regulation of effector functions and differentiation of human CD4 T cells by using a p38-specific inhibitor and a dominant-negative mutant of p38. p38 was found to mediate expression of IL-10 and the Th2 cytokines IL-4, IL-5, and IL-13 in both, primary naive and memory T cells. In contrast, inhibition of p38 activity did not affect expression of the Th1 cytokines IFN-gamma and TNF induced by TCR-stimulation, but decreased IL-12-mediated IFN-gamma expression. Cytokine expression from established Th2 effector cells was also regulated by p38, however, the role of p38 was less pronounced compared to primary CD4 T cells. p38 MAPK regulated cytokine gene expression at both, the transcriptional level by activating gene transcription and the post-transcriptional level by stabilizing cytokine mRNA. As a result of the effect of p38 on IL-4 expression, p38 activity modulated differentiation of naive precursor T cells by inducing a shift of the Th1/Th2 balance toward the immuno-modulatory Th2 direction. Together, the data suggest that p38 plays a key role in human Th2 cell immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200535029DOI Listing

Publication Analysis

Top Keywords

p38
12
cd4 cells
12
role p38
12
p38 mitogen-activated
8
mitogen-activated protein
8
protein kinase
8
effector functions
8
primary human
8
human cd4
8
p38 activity
8

Similar Publications

Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.

View Article and Find Full Text PDF

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Arsenite-induced liver apoptosis via oxidative stress and the MAPK signaling pathway in marine medaka.

Aquat Toxicol

December 2024

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China. Electronic address:

Arsenic (As) is widely recognized for its hazards to aquatic organisms; however, its toxicological impacts on apoptosis in marine fish remain inadequately explored. This study investigated the effects of in vivo dietary exposure to 50 or 500 mg/kg AsIII (as NaAsO) over 28 days in marine medaka, alongside in vitro exposure to 50-750 μg/L AsIII for 48 h in a hepatic cell line derived from marine medaka, to elucidate the toxicity and underlying molecular mechanisms. In vivo, As significantly accumulated in liver tissue (1.

View Article and Find Full Text PDF

Kaempferol attenuates experimental autoimmune neuritis through TNFR1/JNK/p38 signaling pathway inhibition.

Int Immunopharmacol

January 2025

Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China; Neurology Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China. Electronic address:

Kaempferol (Kae) is a flavonoid that has antioxidant, anti-inflammatory and neuroprotective effects. In recent years, there have been increasing reports on viral infection-induced Guillain-Barré syndrome (GBS) with high rates of disability and fatality. Therefore, in order to search for effective peripheral nerve injury repair drugs, we used rats with experimental autoimmune neuritis (EAN) as the typical animal model for GBS, and implemented Kae treatment intervention on EAN rats.

View Article and Find Full Text PDF

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!