Objectives: RNA interference as mediated by short-interfering RNA (siRNA) offers a nonviral means to silence genes in tissue; however, few data exist about gene therapy using siRNA in pancreas tissue. To determine if siRNA treatment could silence an endogenous gene in pancreatic islets, we developed a murine model using the endocrine pancreas.

Methods: The insulin 2 (Ins2) gene was targeted with siRNA, and quantitative RT-PCR, fluorescent microscopy, and FACS were used to measure transcript levels and siRNA cellular uptake and transfection efficiency. Isolated pancreatic islets were transfected with siRNA in vitro using a liposomal delivery method in a dose titration (50-400 nM) or pooled from BALB/c mice having received siRNA (100 microg) via hydrodynamic tail vein injection.

Results: The Ins2 transcript level was significantly reduced by 55% in vitro with FACS data showing a transfection efficiency over 45% with the 400 nM concentration. In vivo delivery of siRNA to pancreatic islets revealed a 33% reduction in Ins2 mRNA levels, although siRNA was able to be detected in 19% of isolated islet cells.

Conclusion: We have successfully used RNA interference to silence an endogenous tissue-specific gene (Ins2) in pancreatic islets when transfected in vitro or administered in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.mpa.0000179730.69081.64DOI Listing

Publication Analysis

Top Keywords

pancreatic islets
16
sirna
9
mediated short-interfering
8
short-interfering rna
8
rna interference
8
silence endogenous
8
levels sirna
8
transfection efficiency
8
islets transfected
8
gene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!