Growth control under stress: mTOR regulation through the REDD1-TSC pathway.

Cell Cycle

Harvard Medical School, MGH Cancer Center, Boston, Massachusettes 02114, USA.

Published: November 2005

Dysregulated signaling by the checkpoint kinase TOR (target of rapamycin) has been linked to numerous human cancers. The tuberous sclerosis tumor suppressors TSC1 and TSC2 form a protein complex that integrates and transmits cellular growth factor and stress signals to negatively regulate TOR activity. Several recent reports have identified the stress response gene REDD1 as an essential regulator of TOR activity through the TSC1/2 complex in both Drosophila and mammalian cells. REDD1 is induced in response both to hypoxia and energy stress, and cells that lack REDD1 exhibit highly defective TOR regulation in response to either of these stress signals. While the precise mechanism of REDD1 function remains to be determined, the finding that REDD1-dependent TOR regulation contributes to cell growth/cell size control in flies and mammals suggests that abnormalities of REDD1-mediated signaling might disrupt energy homeostasis and/or promote tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.4.11.2139DOI Listing

Publication Analysis

Top Keywords

stress signals
8
tor activity
8
tor regulation
8
stress
5
tor
5
growth control
4
control stress
4
stress mtor
4
mtor regulation
4
regulation redd1-tsc
4

Similar Publications

Redox proteomics reveal a role for peroxiredoxinylation in stress protection.

Cell Rep

January 2025

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:

The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.

View Article and Find Full Text PDF

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.

Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.

View Article and Find Full Text PDF

B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish.

Plant Foods Hum Nutr

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.

NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.

View Article and Find Full Text PDF

"Methyl jasmonate: bridging plant defense mechanisms and human therapeutics".

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India.

A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!