We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2005.02.004DOI Listing

Publication Analysis

Top Keywords

cantilever arrays
12
micromechanical cantilever
8
immobilization fast
8
growth detection
8
fungal spores
8
spore immobilization
8
immobilization germination
8
fungal
5
cantilever array
4
array sensors
4

Similar Publications

Cell culture substrates designed for myocardial applications are pivotal in promoting the maturation and functional integration of cardiomyocytes. However, traditional in vitro models often inadequately mimic the diverse biochemical signals and electrophysiological properties of mature cardiomyocytes. Herein, we propose the application of monolayer graphene, transferred onto SU-8 cantilevers integrated with a microelectrode array, to evaluate its influence on the structural, functional, and electro-mechano-physiological properties of cardiomyocytes.

View Article and Find Full Text PDF

Grating Bio-Microelectromechanical Platform Architecture for Multiple Biomarker Detection.

Biosensors (Basel)

August 2024

CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310030, China.

A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect.

View Article and Find Full Text PDF

Controlling cantilevered adaptive X-ray mirrors.

J Synchrotron Radiat

September 2024

Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Modeling the behavior of a prototype cantilevered X-ray adaptive mirror (held from one end) demonstrates its potential for use on high-performance X-ray beamlines. Similar adaptive mirrors are used on X-ray beamlines to compensate optical aberrations, control wavefronts and tune mirror focal distances at will. Controlled by 1D arrays of piezoceramic actuators, these glancing-incidence mirrors can provide nanometre-scale surface shape adjustment capabilities.

View Article and Find Full Text PDF

This article presents a high-accuracy air-coupled acoustic rangefinder based on piezoelectric microcantilever beam array using continuous waves. Cantilevers are used to create a functional ultrasonic rangefinder with a range of 0-1 m. This is achieved through a design of custom arrays.

View Article and Find Full Text PDF

Enhanced gorilla troops optimizer powered by marine predator algorithm: global optimization and engineering design.

Sci Rep

April 2024

Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 12613, Egypt.

This study presents an advanced metaheuristic approach termed the Enhanced Gorilla Troops Optimizer (EGTO), which builds upon the Marine Predators Algorithm (MPA) to enhance the search capabilities of the Gorilla Troops Optimizer (GTO). Like numerous other metaheuristic algorithms, the GTO encounters difficulties in preserving convergence accuracy and stability, notably when tackling intricate and adaptable optimization problems, especially when compared to more advanced optimization techniques. Addressing these challenges and aiming for improved performance, this paper proposes the EGTO, integrating high and low-velocity ratios inspired by the MPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!