Microcanonical variational transition-state theory was used to determine the entropies of activation for hydrogen-bond cleavage reactions leading to CH(3)CN + ROH(2)(+) in a series of acetonitrile-alcohol proton-bound pairs (CH(3)CN)(ROH)H(+) (where R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and (CH(3))(2)CH). In each case, the dissociation potential surface was modelled at the MP2/6-31 + G(d) level of theory. The dissociating configurations having the minimum sums-of-states were identified in each case and the resulting entropies of activation were calculated. Combined with previous work on the competing reaction leading to CH(3)CNH(+) + ROH, the results permitted the determination of the Delta(DeltaS) in each proton-bound pair. For the (CH(3)CN)(CH(3)OH)H(+) and (CH(3)CN)(CH(3)CH(2)OH)H(+) proton-bound pairs, the entropies of activation for the two dissociating channels are essentially the same [i.e., Delta(DeltaS) = 0], while Delta(DeltaS) for the propanol-containing pairs ranged between 40 and 45 J K(-1) mol(-1). The latter non-zero values are due to a combination of the location of the dividing surface in each dissociation and the rapidity with the frequencies of the vanishing vibrational modes go to zero as they are converted to product translations and rotations during the dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2005.08.010DOI Listing

Publication Analysis

Top Keywords

entropies activation
12
deltadeltas deltadeltas
8
cleavage reactions
8
ch3cnrohh+ ch3
8
proton-bound pairs
8
deltadeltas
4
deltadeltas competing
4
competing bond
4
bond cleavage
4
reactions ch3cnrohh+
4

Similar Publications

All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.

View Article and Find Full Text PDF

Objective: This study aimed to analyze the influence of different tunnel reinforcement measures on drivers and to evaluate the associated driving safety risks.

Methods: Experimental data of driving behavior and physiological response were collected under different driving simulation scenarios, such as cover arch erection, corrugated steel, grouting, Steel strips, and fire; an evaluation index system was established based on electrocardiographic (ECG), electrodermal activity(EDA), standard deviation of speed (SDSP), Steering Entropy(SE), standard deviation of lateral position (SDLP) and other indices. The classical domain rank standard of each evaluation index was divided using K-Means algorithm, and a synthetic evaluation matter-element model was established to comprehensively evaluate and analyze the safety risks of each scenario.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats.

View Article and Find Full Text PDF

High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!