BCL-XL expression levels influence differential regional astrocytic susceptibility to 1,3-dinitrobenzene.

Neurotoxicology

Toxicology Program, Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA.

Published: March 2006

The selective vulnerability of brainstem astrocytes to 1,3-dinitrobenzene is mediated by a 10-fold lower threshold for opening of the cyclosporin A-inhibitable mitochondrial permeability transition pore (mtPTP). BCL-XL, BAX and BCL-2 are members of the BCL-2 protein family known to regulate both apoptotic and necrotic cell death signaling at the mtPTP. The levels at which these proteins are expressed relative to one another, where in the cell they are located and whether they are post-translational modified contributes greatly to the balance in active agonistic to active antagonistic BCL-2 proteins, and this critical balance has been hypothesized to dictate regional astrocytic susceptibility to DNB. The effects of DNB on the balance in expression of the BCL-2 family proteins have been evaluated in F344 rat DNB-sensitive (brainstem) and non-sensitive (cortical) tissue homogenates and primary astrocytes. No significant treatment-related alterations in BCL-XL, BAX or BCL-2 protein expression are observed in rat tissue homogenates or primary astrocytes. However, moderate increases in BCL-XL are observed only in DNB-treated rat cortical astrocytes, and these increases may be sufficient to shift the constitutive balance in expression of antagonistic to agonistic BCL-2 proteins from a ratio which favors BAX to one in which BAX and BCL-XL are comparably expressed. Rat primary brainstem and cortical astrocytes are also transiently transfected with bcl-xl to evaluate whether or not moderate enhancement of BCL-XL protein expression levels are sufficient to alter regional sensitivity to DNB in vitro. BCL-XL overexpression minimizes DNB-induced inhibition of succinate dehydrogenase (complex II) activity and increases significantly the concentration of DNB required to induce MPT onset in primary brainstem and cortical astrocytes. Results from the current investigation suggest that modest region-specific alterations in the balance in expression of antagonistic to agonistic BCL-2 proteins may adequately explain differential regional sensitivity to DNB-induced mitochondrial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2005.09.006DOI Listing

Publication Analysis

Top Keywords

bcl-2 proteins
12
balance expression
12
cortical astrocytes
12
bcl-xl
8
expression levels
8
differential regional
8
regional astrocytic
8
astrocytic susceptibility
8
bcl-xl bax
8
bax bcl-2
8

Similar Publications

Withania somnifera-derived phytochemicals as Bcl-B inhibitors in cancer therapy: A computational approach from byte to bench to bedside.

Biochem Biophys Res Commun

January 2025

Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India. Electronic address:

Cancer is the second foremost cause of fatalities associated with non-communicable diseases across the globe, affecting multiple organs and often necessitating costly treatments with adverse side effects. Apoptosis, the body's natural cell death process, plays a crucial role in the prevention of cancer, but it's often disrupted in cancer cells, allowing uncontrolled proliferation. Restoring apoptosis in cancer cells is one of the promising therapeutic strategies to curb tumor growth and enhance clinical outcomes.

View Article and Find Full Text PDF

Tomato B-cell lymphoma2 (Bcl2)-associated athanogene 5 (SlBAG5) contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity.

Int J Biol Macromol

January 2025

Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B.

View Article and Find Full Text PDF

Bcl-2 protein plays an integral role in hijacking apoptosis and triggering chemoresistance in triple negative breast cancer (TNBC). The present study explored the therapeutic efficacy of Bcl-2 inhibitor i.e.

View Article and Find Full Text PDF

Antiproliferative activity of selenium-enriched coumarin derivatives on the SK-N-SH neuroblastoma cell line: Mechanistic insights.

Eur J Med Chem

January 2025

Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China. Electronic address:

Thirty selenium-containing coumarin derivatives were synthesized and evaluated for inhibitory activity against 17 malignant tumor cell lines. Among these, compound 11i demonstrated the most potent inhibition of neuroblastoma SK-N-SH cells, with an IC of 2.5 ± 0.

View Article and Find Full Text PDF

Interleukin-34 (IL-34) was recently reported to be a new biomarker for atherosclerosis diseases, such as coronary artery disease and vascular dementia. IL-34 regulates the expression of proinflammatory cytokines (IL-17A, IL-1 and IL-6), which are classical cytokines involved in myocardial ischemia‒reperfusion (MI/R) injury. However, the exact role of IL-34 in MI/R remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!