Objective: We hypothesized that implantation of adult mesenchymal stem cells after acute myocardial infarction mobilizes bone marrow precursor cells by activating the stem cell factor pathway, and that overdriving this pathway would enhance the beneficial effects of cell transplantation.

Methods: After coronary ligation, medium, mesenchymal stem cells, or stem cell factor-overproducing mesenchymal stem cells were injected into the anterior left ventricle. Cells from beta-galactosidase transgenic mice enabled tracking of injected cells. The global and local impact of the cells was evaluated by measuring cytokine levels, endothelial progenitor cells, and myocardial angiogenesis, and by addressing cardiomyogenesis with confocal microscopy. The impact on cardiac function was evaluated by pressure-volume loops. Ventricular morphometrics were measured after in situ perfusion-fixation of the hearts at physiologic pressures.

Results: Implantation of mesenchymal stem cells increased myocardial stem cell factor levels 2.0-fold, endothelial progenitor cell mobilization 2.7-fold, and myocardial angiogenesis 2.3-fold (P < .05), but did not induce mitogenesis in host cardiomyocytes or give rise to beta-galactosidase-expressing cardiomyocytes. Cell-transplanted groups had improved indices of cardiac function, including preload recruitable stroke work and end-systolic elastance (P < .001). Cell transplantation resulted in 2.0-fold smaller ventricular volumes (P = .001) and 2.0-fold reduced infarct scar area (P = .056), but had no effect on the volume of spared myocardium. Stem cell factor overproduction imparted greater functional benefit without inducing detectable histologic cardiomyocyte regeneration.

Conclusion: Mesenchymal stem cell implantation after myocardial infarction facilitates functional cardiac regeneration without myocyte regeneration through augmentation of endogenous infarct repair, which is enhanced by stem cell factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2005.07.012DOI Listing

Publication Analysis

Top Keywords

stem cell
28
cell factor
20
mesenchymal stem
20
stem cells
16
cardiac function
12
cell
11
stem
11
cells
9
cell transplantation
8
myocardial infarction
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).

View Article and Find Full Text PDF

Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.

Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.

Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!