A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. | LitMetric

Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum.

Brain Res Dev Brain Res

142E Reynolds Medical Building, Department of Human Anatomy and Medical Neurobiology, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.

Published: December 2005

It has been suggested that developmental alcohol-induced brain damage is mediated through increases in oxidative stress. In this study, the concentrations of malondialdehyde (MDA) and reduced glutathione (GSH) were measured to indicate alcohol-mediated oxidative stress. In addition, the ability of two known antioxidants, melatonin (MEL) and lazaroid U-83836E (U), to attenuate alcohol-induced oxidative stress was investigated. Sprague-Dawley rat pups were randomly assigned to six artificially-reared groups, ALC (alcohol), MEL, MEL/ALC, U, U/ALC, and GC (gastrostomy control), and one normal suckle control (to control for artificial-rearing effects on the dependent variables). The daily dosages for ALC, MEL, and U were 6 g/kg, 20 mg/kg, and 20 mg/kg, respectively. Alcohol was administered in 2 consecutive feedings, and antioxidant (MEL or U) was administered for a total of 4 consecutive feedings (2 feedings prior to and 2 feedings concurrently with alcohol). The animals received treatment from postnatal days (PD) 4 through 9. Cerebellar, hippocampal, and cortical samples were collected on PD 9 and analyzed for MDA and GSH content. The results indicated that MDA concentrations in the cerebellum were significantly elevated in animals receiving alcohol; however, MDA levels in the hippocampus and cortex were not affected by alcohol treatment. Additionally, GSH levels in the cerebellum were significantly elevated in groups receiving alcohol, regardless of antioxidant treatment. Neither antioxidant was able to protect against alcohol-induced alterations of MDA or GSH. These findings suggest that alcohol might increase GSH levels indirectly as a compensatory mechanism designed to protect the brain from oxidative-stress-mediated insult.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devbrainres.2005.09.004DOI Listing

Publication Analysis

Top Keywords

gsh levels
12
oxidative stress
12
malondialdehyde mda
8
glutathione gsh
8
consecutive feedings
8
mda gsh
8
cerebellum elevated
8
receiving alcohol
8
alcohol
7
mda
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!