Objective: Postnatal angiogenesis relies on a proper response of endothelial cells to angiogenic stimuli. In systemic sclerosis (SSc), endothelial cells are unresponsive to angiogenic factors. Since circumstantial and experimental evidence points to tissue kallikreins as powerful effectors of the angiogenic response, we undertook this study to investigate the kallikrein pattern of normal and SSc endothelial cells in order to identify differences that can account for defective angiogenesis.
Methods: Expression of 14 tissue kallikreins was studied by a microarray approach, by reverse transcription-polymerase chain reaction, and by Western blotting in endothelial cells isolated from the skin of clinically healthy subjects and SSc patients. Cell proliferation was quantified by direct cell counting. Invasion and capillary morphogenesis were evaluated in a Boyden chamber and in culture flasks layered with Matrigel. Cyclic nucleotide production was measured by enzyme immunoassay. MAP kinase and ERK activation were measured by Western blotting.
Results: Endothelial cells from SSc patients showed poor expression of kallikreins 9, 11, and 12 compared with endothelial cells from normal subjects. Antibodies against the relevant kallikreins on normal endothelial cells revealed that while kallikreins 9, 11, and 12 induced cell growth, only kallikrein 12 regulated invasion and capillary morphogenesis. Buffering of kallikrein 12 with antibodies resulted in the acquisition of an SSc-like pattern by normal cells in in vitro angiogenesis. Reduction of cAMP and cGMP production and of ERK phosphorylation upon administration of antikallikrein antibodies revealed that the activity of kallikreins 9, 11, and 12 was mediated by kinins.
Conclusion: Reduction of tissue kallikreins 9, 11, and 12 may be relevant to reduced angiogenesis in SSc patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.21383 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFPLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFInt J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Biochem Genet
January 2025
Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!