Many viruses have evolved strategies to counteract cellular immune responses, including apoptosis. Vaccinia virus, a member of the poxvirus family, encodes an antiapoptotic protein, F1L. F1L localizes to mitochondria and inhibits apoptosis by preventing the release of cytochrome c by an undetermined mechanism (S. T. Wasilenko, T. L. Stewart, A. F. Meyers, and M. Barry, Proc. Natl. Acad. Sci. USA 100:14345-14350, 2003; T. L. Stewart, S. T. Wasilenko, and M. Barry, J. Virol. 79:1084-1098, 2005). Here, we show that in the absence of an apoptotic stimulus, F1L associates with Bak, a proapoptotic member of the Bcl-2 family that plays a pivotal role in the release of cytochrome c. Cells infected with vaccinia virus were resistant to Bak oligomerization and the initial N-terminal exposure of Bak following the induction of apoptosis with staurosporine. A mutant vaccinia virus missing F1L was no longer able to inhibit apoptosis or Bak activation. In addition, the expression of F1L was essential to inhibit tBid-induced cytochrome c release in both wild-type murine embryonic fibroblasts (MEFs) and Bax-deficient MEFs, indicating that F1L could inhibit apoptosis in the presence and absence of Bax. tBid-induced Bak oligomerization and N-terminal exposure of Bak in Bax-deficient MEFs were inhibited during virus infection, as assessed by cross-linking and limited trypsin proteolysis. Infection with the F1L deletion virus no longer provided protection from tBid-induced Bak activation and apoptosis. Additionally, infection of Jurkat cells with the F1L deletion virus resulted in cellular apoptosis, as measured by loss of the inner mitochondrial membrane potential, caspase 3 activation, and cytochrome c release, indicating that the presence of F1L was pivotal for inhibiting vaccinia virus-induced apoptosis. Our data indicate that F1L expression during infection inhibits apoptosis and interferes with the activation of Bak.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280199 | PMC |
http://dx.doi.org/10.1128/JVI.79.22.14031-14043.2005 | DOI Listing |
J Immunol
February 2025
Vaccine Research Institute, Université Paris-Est Créteil, Créteil, France.
The 2022 Mpox virus (MPXV) outbreak revitalized questions about immunity against MPXV and vaccinia-based vaccines (VAC-V), but studies are limited. We analyzed immunity against MPXV in individuals infected with MPXV or vaccinated with the licensed modified vaccinia Ankara (MVA) Bavarian Nordic or an experimental MVA-HIVB vaccine. The frequency of neutralizing antibody responders was higher among MPXV-infected individuals than MVA vaccinees.
View Article and Find Full Text PDFEmerg Microbes Infect
March 2025
School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
Mpox virus (MPXV) has to establish efficient interferon (IFN) antagonism for effective replication. MPXV-encoded IFN antagonists have not been fully elucidated. In this study, the IFN antagonism of poxin-schlafen (PoxS) fusion gene of MPXV was characterized.
View Article and Find Full Text PDFPLoS One
March 2025
Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan.
To generate a novel oncolytic vaccinia virus with improved safety and productivity, the genome of smallpox vaccine strain LC16m8 was modified by a bacterial artificial chromosome system. By using LC16m8, a replicating virus homologous to the target virus, as a helper virus for the bacterial artificial chromosome system, we successfully recovered genome-edited infectious viruses. Oncolytic viruses with limited growth in normal cells were obtained by deleting the genes for vaccinia virus growth factor (VGF), extracellular signal-regulated kinase-activating protein (O1L), and ribonucleotide reductase (RNR) present in the viral genome.
View Article and Find Full Text PDFBundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
March 2025
Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen (Hessen), Deutschland.
Platform technologies in the narrower sense refer to approaches to vaccine development in which the vaccine is always based on a consistently identical framework and differs only in terms of the antigen. One advantage of platform technologies is their rapid adaptability for the development of a vaccine against novel pathogens or variants. Currently approved vaccines in the EU use viral vectors and mRNA as platforms.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
March 2025
Department of Pharmaceutics, ISF College Pharmacy, Moga, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!