A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fatty acid transport and metabolism in HepG2 cells. | LitMetric

Fatty acid transport and metabolism in HepG2 cells.

Am J Physiol Gastrointest Liver Physiol

Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.

Published: March 2006

AI Article Synopsis

  • The study investigates how liver cells uptake fatty acids, focusing on the roles of diffusion versus protein-based mechanisms.
  • Researchers found that adding oleate to liver cells quickly lowered the intracellular pH, indicating fatty acid diffusion across the membrane, with recovery linked to oleate metabolism.
  • The results suggest that natural fatty acids can efficiently bind to and pass through the plasma membrane without being affected by metabolic inhibitors or potential fatty acid transporters.

Article Abstract

The mechanism(s) of fatty acid uptake by liver cells is not fully understood. We applied new approaches to address long-standing controversies of fatty acid uptake and to distinguish diffusion and protein-based mechanisms. Using HepG2 cells containing an entrapped pH-sensing fluorescence dye, we showed that the addition of oleate (unbound or bound to cyclodextrin) to the external buffer caused a rapid (seconds) and dose-dependent decrease in intracellular pH (pH(in)), indicating diffusion of fatty acids across the plasma membrane. pH(in) returned to its initial value with a time course (in min) that paralleled the metabolism of radiolabeled oleate. Preincubation of cells with the inhibitors phloretin or triacsin C had no effect on the rapid pH(in) drop after the addition of oleate but greatly suppressed pH(in) recovery. Using radiolabeled oleate, we showed that its esterification was almost completely inhibited by phloretin or triacsin C, supporting the correlation between pH(in) recovery and metabolism. We then used a dual-fluorescence assay to study the interaction between HepG2 cells and cis-parinaric acid (PA), a naturally fluorescent but slowly metabolized fatty acid. The fluorescence of PA increased rapidly upon its addition to cells, indicating rapid binding to the plasma membrane; pH(in) decreased rapidly and simultaneously but did not recover within 5 min. Phloretin had no effect on the PA-mediated pH(in) drop or its slow recovery but decreased the absolute fluorescence of membrane-bound PA. Our results show that natural fatty acids rapidly bind to, and diffuse through, the plasma membrane without hindrance by metabolic inhibitors or by an inhibitor of putative membrane-bound fatty acid transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00386.2005DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
hepg2 cells
12
plasma membrane
12
acid uptake
8
addition oleate
8
fatty acids
8
membrane phin
8
radiolabeled oleate
8
phloretin triacsin
8
phin drop
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!