The anaphylatoxin C3a is a proinflammatory mediator generated during complement activation. The tight control of C3a receptor (C3aR) expression is crucial for the regulation of anaphylatoxin-mediated effects. Key factors regulating constitutive expression of the C3aR in the mast cell line HMC-1 and receptor induction by dibutyryl-cAMP in monomyeloblastic U937 cells were determined by functional characterization of the C3aR promoter. Nucleotides -18 to -285 upstream of the translational start site proved to be critical for promoter activity in HMC-1 cells. Binding sites for the transcription factors AP-1 and Ets could be located. Overexpressed c-Jun/c-Fos (AP-1) and Ets-1 led synergistically to increased promoter activity that was substantially reduced by site-directed mutagenesis of the corresponding elements within the C3aR promoter. In HMC-1 cells, Ets interacted directly with the predicted binding motif of the C3aR promoter as determined by electromobility shift assays. AP-1 binding to the C3aR promoter was augmented during C3aR induction in U937 cells. A retroviral gene transfer system was used to express a dominant negative mutant of Ets-1 in these cells. The resulting cells failed to up-regulate the C3aR after stimulation with dibutyryl-cAMP and showed decreased AP-1 binding, suggesting that Ets acts here indirectly. Thus, it was established that Ets and the AP-1 element mediates dibutyryl-cAMP induction of C3aR promoter activity, hence providing a mechanistic explanation of dibutyryl-cAMP-dependent up-regulation of C3aR expression. In conclusion, this study demonstrates an important role of AP-1 and a member of the Ets family in the transcriptional regulation of C3aR expression, a prerequisite for the ability of C3a to participate in immunomodulation and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M508146200DOI Listing

Publication Analysis

Top Keywords

c3ar promoter
20
c3ar expression
12
promoter activity
12
c3ar
11
transcription factors
8
factors ap-1
8
ap-1 ets
8
c3a receptor
8
u937 cells
8
hmc-1 cells
8

Similar Publications

Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury.

FASEB J

September 2013

Perinatal Center, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Complement is an essential component of inflammation that plays a role in ischemic brain injury. Recent reports demonstrate novel functions of complement in normal and diseased CNS, such as regulation of neurogenesis and synapse elimination. Here, we examined the role of complement-derived peptide C3a in unilateral hypoxia-ischemia (HI), a model of neonatal HI encephalopathy.

View Article and Find Full Text PDF

Transcriptional control of complement receptor gene expression.

Immunol Res

January 2008

Department of Microbiology, Graduate Program in Immunology, The University of Iowa, 3-403 Bowen Science Bldg, 51 Newton Rd, Iowa, IA 52242, USA.

Immune complement is a critical system in the immune response and protection of host cells from damage by complement is critical during inflammation. The expression of the receptors for the inflammatory anaphylatoxin molecules is also key in immunity. In order to fully appreciate the biology of complement, a basic understanding of the molecular regulation of complement receptor gene expression is critical, yet these kinds of studies are lacking for many genes.

View Article and Find Full Text PDF

Signaling through C5aR is not involved in basal neurogenesis.

J Neurosci Res

October 2007

Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.

The complement system, an important part of the innate immune system, provides protection against invading pathogens, in part through its proinflammatory activities. Although most complement proteins are synthesized locally in the brain and the relevant complement receptors are expressed on resident brain cells, little is known about brain-specific role(s) of the complement system. C3a and C5a, complement-derived peptides with anaphylatoxic properties, have been implicated in noninflammatory functions, such as tissue regeneration and neuroprotection.

View Article and Find Full Text PDF

The C3a anaphylatoxin has been implicated in several autoimmune states including arthritis and multiple sclerosis. The expression pattern of the C3a receptor (C3aR) is critically important in C3a biology, yet very little is known about the transcriptional control of the C3aR gene. Since C3a is hypothesized to play a role in neuroinflammation, we investigated the molecular mechanisms governing C3aR expression in astrocytes and microglia.

View Article and Find Full Text PDF

The anaphylatoxin C3a is a proinflammatory mediator generated during complement activation. The tight control of C3a receptor (C3aR) expression is crucial for the regulation of anaphylatoxin-mediated effects. Key factors regulating constitutive expression of the C3aR in the mast cell line HMC-1 and receptor induction by dibutyryl-cAMP in monomyeloblastic U937 cells were determined by functional characterization of the C3aR promoter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!