Myocardial dysfunction in mitochondrial diabetes treated with Coenzyme Q10.

Diabetes Res Clin Pract

Division of Endocrinology, Department of Medicine, Federal University of São Paulo, Rua Botucatu, 740 0434-970 São Paulo, SP, Brazil.

Published: April 2006

Maternally-inherited diabetes and deafness (MIDD) has been related to an A to G transition in the mitochondrial tRNA Leu (UUR) gene at the base pair 3243. Although some previous articles have reported that this mutation may be a cause of cardiomyopathy in diabetes, the degree of cardiac involvement and a specific treatment has not been established. Here, we reported a case of a patient with MIDD who developed congestive heart failure and the therapeutic usefulness of Coenzyme Q10 (CoQ10). In our patient, after the introduction of Coenzyme Q10 150 mg/day, there was a gradual improvement on left ventricular function evaluated by echocardiography. The fractional shortening (FS) and ejection fraction (EF) increased from 26 to 34% and from 49 to 64%, respectively. No side effects were noted. Three months after CoQ10 discontinuation, the parameters of systolic function evaluated by echocardiography decreased, suggesting that CoQ10 had a beneficial effect. Identification of diabetes and cardiomyopathy due to mitochondrial gene mutation may have therapeutic implications and Coenzyme Q10 is a possible adjunctive treatment in such patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabres.2005.09.005DOI Listing

Publication Analysis

Top Keywords

coenzyme q10
16
function evaluated
8
evaluated echocardiography
8
myocardial dysfunction
4
dysfunction mitochondrial
4
diabetes
4
mitochondrial diabetes
4
diabetes treated
4
coenzyme
4
treated coenzyme
4

Similar Publications

Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

Introduction: Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-like quinone. The plasma levels of CoQ10 are reduced in patients with chronic kidney disease (CKD). CoQ10 supplementation can improve mitochondrial function and decrease oxidative stress in these patients.

View Article and Find Full Text PDF

Background: Coenzyme Q10 (CoQ10) nephropathy is a well-known cause of hereditary steroid-resistant nephrotic syndrome, primarily impacting podocytes. This study aimed to elucidate variations in individual cell-level gene expression in CoQ10 nephropathy using single-cell transcriptomics.

Methods: We conducted single-cell sequencing of a kidney biopsy specimen from a 5-year-old boy diagnosed with a CoQ10 nephropathy caused by a compound heterozygous COQ2 mutation complicated with immune complex-mediated glomerulonephritis.

View Article and Find Full Text PDF

One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33,000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!