Styryl dyes have been among the most widely used probes for mapping membrane potential changes in excitable cells. However, their utility has been somewhat limited because their excitation wavelengths have been restricted to the 450-550 nm range. Longer wavelength probes can minimize interference from endogenous chromophores and, because of decreased light scattering, improve recording from deep within tissue. In this paper we report on our efforts to develop new potentiometric styryl dyes that have excitation wavelengths ranging above 700 nm and emission spectra out to 900 nm. We have prepared and characterized dyes based on 47 variants of the styryl chromophores. Voltage-dependent spectral changes have been recorded for these dyes in a model lipid bilayer and from lobster nerves. The voltage sensitivities of the fluorescence of many of these new potentiometric indicators are as good as those of the widely used ANEP series of probes. In addition, because some of the dyes are often poorly water soluble, we have developed cyclodextrin complexes of the dyes to serve as efficient delivery vehicles. These dyes promise to enable new experimental paradigms for in vivo imaging of membrane potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2005.07.013 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India. Electronic address:
Bioorg Chem
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China. Electronic address:
Sulfur dioxide (SO) and viscosity play important roles in living organisms, and abnormal levels of them are associated with many diseases. Hence, a bifunctional fluorescence probe (E)-3-(2-(4-(4-(4-(6-fluoro-3-hydroxy-4-oxo-4H-chromen-2-yl)benzoyl)piperazin-1-yl)styryl)benzo-[d]thiazol-3-ium-3-yl)propane-1-sulfonate (HFBT) with fluorescence resonance energy transfer (FRET) properties was successfully constructed by using 3-hydroxyflavonol as the energy donor and benzothiazole sulphonate derivatives as the energy acceptor, and it can be used for the detection of SO derivatives (HSO/HSO) and viscosity. HFBT exhibits a large Stokes shift (245 nm), high resonance energy transfer efficiency (95.
View Article and Find Full Text PDFJ Fluoresc
September 2024
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Nezavisimosti ave. 68-2, Minsk, 220072, Belarus.
Solubilization of the styrylcyanine dye Sbt ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]thiazol-3-ium iodide) and its homodimers Dbt-5 and Dbt-10 in aqueous solution of sodium dodecyl sulfate and Triton X-100 has been studied by steady state and picosecond time-resolved fluorescence spectroscopy. At low concentration of sodium dodecyl sulfate in solution, between Sbt, Dbt-5 dyes molecules and surfactant ion pairs are formed followed by the formation non-luminescent H-aggregates. The nature of the interaction between molecules of dyes and surfactants has been revealed.
View Article and Find Full Text PDFChem Asian J
December 2024
Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!