AI Article Synopsis

  • PGG, a compound from Paeonia suffruticosa, relaxes blood vessels in a way that depends on healthy endothelial function and involves nitric oxide (NO) and cGMP signaling.
  • PGG also reduces inflammation by inhibiting key processes initiated by tumor necrosis factor-alpha (TNF-alpha), such as the activation of nuclear factor-kappaB (NF-kappaB) and the expression of adhesion molecules.
  • Overall, PGG effectively promotes blood vessel dilation and alleviates vascular inflammation, suggesting potential therapeutic benefits in treating related conditions.

Article Abstract

Vasorelaxant and anti-inflammatory effects of a 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG) isolated from the root barks of Paeonia suffruticosa and possible mechanisms responsible were investigated. PGG induced a concentration-dependent relaxation of the phenylephrine-precontracted rat aorta. This effect disappeared with the removal of functional endothelium. Pretreatment of the aortic tissues with either N(G)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-alpha]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by PGG. Incubation of human umbilical vein endothelial cells (HUVECs) or carotid arteries isolated from rats with PGG increased the production of cGMP in a dose-dependent manner, but this effect was blocked by pretreatment with L-NAME and ODQ, respectively. PGG treatment attenuated tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor-kappaB (NF-kappaB) p65 translocation in human umbilical vein endothelial cells. In addition, PGG suppressed the expression levels of adhesion molecules including intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) induced by TNF-alpha. TNF-alpha-induced monocyte chemoattractant protein-1 (MCP-1) expression was also attenuated by addition of PGG. PGG treatment inhibited cellular adhesion of U937 cells onto human umbilical vein endothelial cells induced by TNF-alpha. Taken together, the present study suggests that PGG dilates vascular smooth muscle and suppresses the vascular inflammatory process via endothelium-dependent nitric oxide (NO)/cGMP signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2005.08.061DOI Listing

Publication Analysis

Top Keywords

human umbilical
12
umbilical vein
12
vein endothelial
12
endothelial cells
12
pgg
10
anti-inflammatory effects
8
effects 12346-penta-o-galloyl-beta-d-glucose
8
12346-penta-o-galloyl-beta-d-glucose pgg
8
pgg treatment
8
addition pgg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!