Mutation of the human genome ranges from single base-pair changes to whole-chromosome aneuploidy. Karyotyping, fluorescence in situ hybridization, and comparative genome hybridization are currently used to detect chromosome abnormalities of clinical significance. These methods, although powerful, suffer from limitations in speed, ease of use, and resolution, and they do not detect copy-neutral chromosomal aberrations--for example, uniparental disomy (UPD). We have developed a high-throughput approach for assessment of DNA copy-number changes, through use of high-density synthetic oligonucleotide arrays containing 116,204 single-nucleotide polymorphisms, spaced at an average distance of 23.6 kb across the genome. Using this approach, we analyzed samples that failed conventional karyotypic analysis, and we detected amplifications and deletions across a wide range of sizes (1.3-145.9 Mb), identified chromosomes containing anonymous chromatin, and used genotype data to determine the molecular origin of two cases of UPD. Furthermore, our data provided independent confirmation for a case that had been misinterpreted by karyotype analysis. The high resolution of our approach provides more-precise breakpoint mapping, which allows subtle phenotypic heterogeneity to be distinguished at a molecular level. The accurate genotype information provided on these arrays enables the identification of copy-neutral loss-of-heterozygosity events, and the minimal requirement of DNA (250 ng per array) allows rapid analysis of samples without the need for cell culture. This technology overcomes many limitations currently encountered in routine clinical diagnostic laboratories tasked with accurate and rapid diagnosis of chromosomal abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271402PMC
http://dx.doi.org/10.1086/497343DOI Listing

Publication Analysis

Top Keywords

chromosomal abnormalities
8
oligonucleotide arrays
8
arrays 116204
8
high-resolution identification
4
identification chromosomal
4
abnormalities oligonucleotide
4
116204 snps
4
snps mutation
4
mutation human
4
human genome
4

Similar Publications

Depletion of TP53 in Human Pluripotent Stem Cells Triggers Malignant-Like Behavior.

Adv Biol (Weinh)

January 2025

Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands.

Human pluripotent stem cells (hPSCs) tend to acquire genetic aberrations upon culture in vitro. Common aberrations are mutations in the tumor suppressor TP53, suspected to confer a growth-advantage to the mutant cells. However, their full impact in the development of malignant features and safety of hPSCs for downstream applications is yet to be elucidated.

View Article and Find Full Text PDF

Chromosome aberrations and autoimmunity: Immune-mediated diseases associated with 18p deletion and other chromosomal aberrations.

Autoimmun Rev

January 2025

Division of Rheumatology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Fleury Medicine and Health, Fleury Group, São Paulo, SP, Brazil. Electronic address:

Recent advances in genomic methodologies have significantly enhanced our understanding of immune-mediated rheumatic diseases. Specific structural variants (SVs), such as substantial DNA deletions or insertions, including chromosomal aberrations, have been implicated in diseases of immune dysregulation. Regrettably, SVs are frequently overlooked in next-generation sequencing (NGS) targeted-gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS).

View Article and Find Full Text PDF

Introduction: Genome-wide non-invasive prenatal testing (gwNIPT) has screening limitations for detectable genetic conditions and cannot detect microdeletions/microduplications (MD) or triploidy. Nuchal translucency (NT) increases with gestation and with genetic or structural abnormalities. This study aims to determine the utility of NT measurement in detecting genetic abnormalities not identified by gwNIPT and the optimal NT threshold value.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!