Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting--the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for 'directed mutagenesis' and targeted 'gene editing' of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270952 | PMC |
http://dx.doi.org/10.1093/nar/gki912 | DOI Listing |
J Med Virol
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2024
Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar. Electronic address:
Cell proliferation and differentiation are two fundamental biological processes that occur in biological systems, tightly regulated by various factors such as transcription factors (TFs). Zinc finger proteins are TFs responsible for maintaining the biological balance via coordinating development and functionality within the living cells. GATA binding protein 3 (GATA3), one of the zinc finger proteins, plays an essential role in driving differentiation and proliferation-related processes, thereby contributing to the regulation of the dynamism and productivity of living cells.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
School of Pharmacy, Nantong University, Nantong, Jiangsu, China. Electronic address:
Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Human cytomegalovirus (HCMV) is a herpes virus with a long replication cycle. HCMV encoded long non-coding RNA termed RNA2.7 is the dominant transcript with a length of about 2.
View Article and Find Full Text PDFOxid Med Cell Longev
December 2024
Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico.
Occupational exposure to arsenic (As), cadmium (Cd), and lead (Pb) affects many sectors, necessitating research to understand their transformation mechanisms. In this study, we characterized the process of epithelial-mesenchymal transition (EMT) in a rat hepatic epithelial cell line with decreased expression of catalase and glutamate cysteine ligase catalytic (GCLC) subunit that was exposed to a mixture of As, Cd, and Pb at equimolar occupational exposure concentrations. We evaluated the expression of genes and proteins involved in EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!