Five new paramagnetic dinuclear complexes containing [5]trovacenyl groups, (eta7-C7H7)V(eta5-C5H4-), have been prepared and characterized, including by single-crystal X-ray diffraction. As intervening spacers, ethenediyl units in the geminal and vicinal (Z)- and (E)-bridging modes as well as methanediyl and ethanediyl units have been included with the aim of studying their propensity to transmit electric and magnetic information. It is found that redox splitting of consecutive electron-transfer steps is resolved for reduction (0-->1- -->2-) only, unsaturation of the C2 bridge not being requisite, since the -CH2CH2- spacer also gives rise to a small redox splitting. Magnetic communication is quantified in terms of the exchange coupling constant J, accessible from the EPR hyperfine pattern in solution and from magnetic susceptometry in the solid state. The results obtained from these methods generally differ; this fact is not surprising in view of conformational differences in the respective states of aggregation. It is concluded that orientation-dependent mechanisms of spin-spin interactions (pi-orbital overlap, hyperconjugation) contribute extensively although, as implied by sizeable J values for -CH2- and -C2H4- linked di[5]trovacenyl groups, coupling mediated by the sigma-orbital chain must also be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200500492DOI Listing

Publication Analysis

Top Keywords

redox splitting
8
electro- magnetocommunication
4
magnetocommunication [55]ditrovacenyls
4
[55]ditrovacenyls [eta7-c7h7veta5-c5h4-x-eta5-c5h4veta7-c7h7]
4
[eta7-c7h7veta5-c5h4-x-eta5-c5h4veta7-c7h7] mediated
4
mediated spacers
4
spacers z-ch=ch-
4
z-ch=ch- e-ch=ch-
4
e-ch=ch- c=ch2
4
c=ch2 -ch2ch2-
4

Similar Publications

A scalable solar-driven photocatalytic system for separated H and O production from water.

Nat Commun

January 2025

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.

Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.

View Article and Find Full Text PDF

Synergistic hydrogen production and organic pollutant removal via dual-functional photocatalytic systems.

J Environ Sci (China)

July 2025

Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Photocatalytic water splitting is a promising way to produce H, a green and clean energy source. However, efficient H production typically relies on the addition of electron donors, such as alcohols and acids, which are neither environmentally friendly nor cost-effective. Recently, we have witnessed a surge of studies in coupling photocatalytic H evolution with organic pollutant oxidation, which significantly promotes charge separation and improves the overall photocatalytic efficiency.

View Article and Find Full Text PDF

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!