Successful treatment of cancer requires a clear understanding of drug-resistance mechanism. Cancer patient are often treated with standard protocols without considering individual difference in chemosensitivity, whereas the efficacy of anticancer drug varies widely among individual patients. Since chemosensitivity involves multiple interacting factors, it is not sufficient to investigate a single gene or factor to fix chemoresistance. Along with affecting disease progression, the synergism between genetic and epigenetic abnormalities can contribute to convert a sensible tumor cell in a resistant one. Unlike genetic changes, epigenetic changes are potentially reversible. Therefore, treatment with DNA methylation inhibitors can reactivate the expression of genes improperly methylated and can reverse many aspect of cancer phenotype such as drug resistance. The demethylating agents are used in the treatment of several kind of tumor, but toxicity and the potential outcome on the normal methylation patterns have always been concern of researchers and clinicals. It is necessary to create individual chemosensitivity-chemoresistance maps in order to identify the combination of drugs for optimized treatments. An overview on genetic and epigenetic events contributing to clonally selection of chemotherapeutic-resistant tumors is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.20515 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia.
Autoimmune thyroid disease (AITD) is the leading cause of thyroid dysfunction globally, characterized primarily by two distinct clinical manifestations: Hashimoto's thyroiditis (HT) and Graves' disease (GD). The prevalence of AITD is approximately twice as high in women compared to men, with a particularly pronounced risk during the reproductive years. Pregnancy exerts profound effects on thyroid physiology and immune regulation due to hormonal fluctuations and immune adaptations aimed at fostering maternal-fetal tolerance, potentially triggering or exacerbating AITD.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Division of Hematology Oncology, Akron Children's Hospital, One Perkins Square, Akron, OH 44308, USA.
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers.
View Article and Find Full Text PDFNutrients
December 2024
Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA.
Background/objectives: Atherosclerosis is a chronic inflammatory disease developing and progressing in the presence of risk factors including hyperlipidemia, hypercholesterolemia, and chronic inflammation, among others. Atherosclerosis commonly precipitates as ischemic events, transient ischemic attacks, and myocardial infarction. Saturated fatty acids are risk factors; however, their association with epigenetics in the pathophysiology of atherosclerosis is not clearly understood.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!