Purpose: The present study was conducted to investigate healing of alkali-burned corneas in MRL/MpJ (MRL) mice.
Methods: Gross, clinical, and histologic criteria were used to compare healing of alkali-burned corneas in MRL and control C57BL/6J (B6) mice. Effects of neutrophil depletion of B6 mice and allogeneic reconstitution of B6 mice with MRL bone marrow on wound healing were evaluated. Gene expression patterns in normal and wounded corneas were surveyed with array-based quantitative real-time RT-PCR (AQPCR).
Results: MRL mice showed accelerated reepithelialization and decreased corneal opacity compared with B6 mice after alkali wounding. Marked inflammatory cell infiltration and fibrosis were evident in the corneas and anterior chambers of B6 mice. MRL mice showed less severe lesions, except for stromal edema. Rapid reepithelialization and reduced keratitis/iritis were also observed in neutrophil-depleted B6 mice, but not in B6 mice reconstituted with MRL bone marrow. AQPCR showed transcriptional changes of fewer genes associated with inflammation and corneal tissue homeostasis in alkali-burned corneas from MRL mice. Increased expression of an anti-inflammatory gene, Socs1, and a gene associated with healing, Mmp1a, were evident in MRL corneas.
Conclusions: Alkali-burned corneas heal faster and more completely in MRL mice than in B6 mice, by means of rapid reepithelialization, reduced inflammation, and reduced fibrosis. Reduced inflammation, including decreased neutrophil infiltrates and the lack of a robust proinflammatory gene expression signature correlates with the rapid healing. However, the rapid-healing phenotype is not intrinsic to MRL hematopoietic progenitor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.05-0548 | DOI Listing |
Exp Eye Res
October 2023
Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory for Corneal Diseases Research of Zhejiang Province), Hangzhou, Zhejiang, 310016, China. Electronic address:
The role and related mechanisms of tetramethylpyrazine (TMP) in corneal alkali burn in rats were expected to be explored in this article. After construction of corneal alkali burn rat models, TMP eye drops were given four times daily for consecutive 7 days. H&E staining was utilized for observing the histopathological changes of corneas on the 3rd and 7th days of treatment; immunohistochemistry for detecting the Nestin protein expression changes; qRT-PCR for determining the expression changes of genes correlated with neovascularization [C-X-C Motif Chemokine Ligand 1 (CXCL-1), vascular endothelial growth factor A (VEGFA) and CD31] and inflammation-related factors [monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), tumour necrosis factor α (TNF-α), and IL-6]; Western blot for testing NLR Family Pyrin Domain Containing 1 (NLRP1)/NLRP3 inflammasomes and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway-related protein expression changes.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2024
Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
J Ocul Pharmacol Ther
May 2024
Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
This study aimed to evaluate the effects of a new treatment-conditioned medium from human orbital adipose-derived stem cells (OASC-CM)-on corneal recovery after alkali burns in a rabbit model. The corneal alkali burn rabbit model was established and treated with OASC-CM, conditioned medium from human abdominal subcutaneous adipose-derived stem cells (ABASC-CM), and fresh control culture medium (con-CM) three times a day for 7 days, respectively. Subsequently, the treatment effects were evaluated and compared through clinical, histological, immunohistochemical, and cytokine evaluations.
View Article and Find Full Text PDFJ Tradit Chin Med
April 2024
Department of Ophthalmology, Affiliated People's Hospital (Fujian Provincial People's Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China.
Objective: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization.
Methods: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays.
Mol Vis
January 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
Purpose: Corneal alkali burns can progress to corneal epithelial defects, inflammation, scarring, and angiogenesis, potentially leading to blindness. Therefore, we examined the therapeutic effects of a novel ophthalmic solution (ZK002) on wound healing in alkali-burned rat corneas.
Methods: In this study, we attempted to treat alkali-exposed rat corneas using topical application of either an ophthalmic solution with ZK002 or an anti-vascular endothelial growth factor agent for 14 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!