The recombinant thioesterase (TE) domain of the picromycin/methymycin synthase (PICS) catalyzes the macrolactonization of 3, the N-acetylcysteamine thioester of seco-10-deoxymethynolide to generate 10-deoxymethynolide (1) with high efficiency. By contrast, 4, the 7-dihydro derivative of seco-thioester 3, undergoes exclusive hydrolysis by PICS TE to seco-acid 5. The recombinant TE domain of 6-deoxyerythronolide B synthase (DEBS TE) shows the same reaction specificity as PICS TE, but with significantly lower activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2005.09.077 | DOI Listing |
ACS Catal
November 2024
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
In nature, thousands of diverse and bioactive polyketides are assembled by a family of multifunctional, "assembly line" enzyme complexes called polyketide synthases (PKS). Since the late 20th century, there have been several attempts to decode, rearrange, and "reprogram" the PKS assembly line to generate valuable materials such as biofuels and platform chemicals. Here, the first module from () PKS12, an unorthodox, "modularly iterative" PKS, was modified and repurposed toward the formation of 2-methyl Guerbet lipids, which have wide applications in industry.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Division of Gastroenterology, Hepatology & Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
July 2024
CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Background: Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction.
View Article and Find Full Text PDFJ Pharm Sci
August 2024
Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia. Electronic address:
Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems.
View Article and Find Full Text PDFBiomolecules
April 2024
Research Center of Biotechnology, Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia.
Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!