Currently, challenges exist to acquire long-range (hundreds of kilobase pairs) phase-discriminated sequence across substantial numbers of individuals. We have developed a straightforward method for isolating and characterizing specific genomic regions in a haplospecific manner. Real-time PCR is carried out to STS content map and genotype pools of fosmid clones arrayed in 384-well microtiter plates. Single-nucleotide polymorphisms, microsatellite markers, and insertion-deletion polymorphisms are used to differentiate the target region into haplotype-specific tiling paths. DNA of clones from these tiling paths is retrieved from the library and either sequenced by standard shotgun methods or amplified in vitro and sequenced by a primer-based, directed method. This approach provides convenient access to complete, haplotype-resolved resequencing data from multiple individuals across tens to hundreds of thousands of basepairs. We illustrate its implementation with a detailed example of more than 400 kbp from the human CFTR region, across 15 individuals, and summarize our experience applying it to many other human loci.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2005.08.013DOI Listing

Publication Analysis

Top Keywords

haplotype-resolved resequencing
8
tiling paths
8
targeted haplotype-resolved
4
resequencing long
4
long segments
4
segments human
4
human genome
4
genome currently
4
currently challenges
4
challenges exist
4

Similar Publications

The common bed bug, Cimex lectularius, is a globally distributed pest insect of medical, veterinary, and economic importance. Previous reference genome assemblies for this species were generated from short read sequencing data, resulting in a ~650 Mb composed of thousands of contigs. Here, we present a haplotype-resolved, chromosome-level reference genome, generated from an adult Harlen strain female specimen.

View Article and Find Full Text PDF

Haplotype-level allelic characterization facilitates research on the functional, evolutionary and breeding-related features of extremely large and complex plant genomes. We report a 21.7-Gb chromosome-level haplotype-resolved assembly in Pinus densiflora.

View Article and Find Full Text PDF

Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose.

Nat Plants

November 2024

Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.

Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida 'Samantha' ('JACmantha') and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars.

View Article and Find Full Text PDF

Indian jujube (Ziziphus mauritiana) holds a prominent position in the global fruit and pharmaceutical markets. Here, we report the assemblies of haplotype-resolved, telomere-to-telomere genomes of autotetraploid wild and cultivated Indian jujube plants using a 2-stage assembly strategy. The generation of these genomes permitted in-depth investigations into the divergence and evolutionary history of this important fruit crop.

View Article and Find Full Text PDF

Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!