Background: During the female reproductive cycle, follicular development and corpus luteum formation crucially depend on the fast generation of new blood vessels. The importance of granulosa cells and follicular fluid in controlling this angiogenesis is still not completely understood. Vascular endothelial growth factor (VEGF) produced by granulosa cells and secreted into the follicular fluid plays an essential role in this process. On the other hand, soluble VEGF receptor-1 (sFlt-1) produced by endothelial cells acts as a negative modulator for the bioavailability of VEGF. However, the regulation of sFlt-1 production remains to be determined.
Methods: We analyzed the influence of human follicular fluid obtained from FSH-stimulated women as well as of human granulosa cell conditioned medium on sFlt-1 production in and release from human umbilical vein endothelial cells (HUVEC) in vitro. Soluble Flt-1 gene expression was determined by RT-PCR analysis, amount of sFlt-1-protein was quantified by Sandwich-ELISA.
Results: Human follicular fluid as well as granulosa cell-conditioned medium significantly inhibit the production of sFlt-1 by endothelial cells on a posttranscriptional level. Treatment of cultured granulosa cells with either hCG or FSH had not impact on the production of sFlt-1 inhibiting factors. We further present data suggesting that this as yet unknown sFlt-1 regulating factor secreted by granulosa cells is not heat-sensitive, not steroidal, and it is of low molecular mass (< 1000 Da).
Conclusion: We provide strong support that follicular fluid and granulosa cells control VEGF availability by down regulation of the soluble antagonist sFlt-1 leading to an increase of free, bioactive VEGF for maximal induction of vessel growth in the ovary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276815 | PMC |
http://dx.doi.org/10.1186/1477-7827-3-57 | DOI Listing |
Redox Biol
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.
View Article and Find Full Text PDFSyst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Biomedicines
January 2025
First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece.
Poor ovarian response (POR) remains a significant challenge in the field of assisted reproductive technology (ART), as the quantity and quality of oocytes retrieved directly influence embryo implantation, clinical pregnancy, and live birth rates. Metabolomics has become a valuable tool for elucidating the molecular mechanisms underlying diminished ovarian reserve (DOR) and POR. This review aims to synthesize findings from metabolomic studies examining metabolite expression patterns in serum and follicular fluid samples from women with POR.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia.
(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!