From a clinical as well as a neuropathological point of view Alzheimer's disease (AD) has been the focus of intense research for more than three decades. Most studies to identify morphometric correlates with the declining cognitive function in normal aging and AD have employed semi-quantitative methods to assess neuropathological markers such as neurofibrillary tangles, senile plaques, neuronal, or glial cell densities, and neuron sizes. To this end, many cell counting methods have employed two-dimensional designs in single sections, yielding estimates of cell numbers either as neuron densities (number of cell profiles per area) or estimates of the size distribution of neuron profiles in columns vertical to the cortical surface. This approach gives rise to difficulties in interpretation because of the three-dimensional size, shape, and orientation of the counted cells, and the effect of shrinkage artifacts. Modern stereological techniques offer a more rigorous approach for quantifying neuropathological changes associated with aging and degenerative disease. However the stereological studies also suffer from the limitations of high biological variability in AD-type neuropathology, and the relative scarcity of autopsied brains from well-studied non-demented comparison subjects. As a result, the clinicopathological associations between neuropathology and indices of cognitive performance in aging and AD are not yet firmly established. The requirement for the proper description of morphologic neuropathology of AD is clear: any macroscopic or microscopic abnormalities, are subtle and must consequently be demonstrated reproducibly in well-controlled studies. In this review we try to evaluate which, if any, of the contemporary claims for morphometric brain abnormalities in AD can be said to be well established, with special emphasis placed on human stereological post-mortal studies.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156720505774330528DOI Listing

Publication Analysis

Top Keywords

measuring morphological
4
morphological cellular
4
cellular changes
4
changes alzheimer's
4
alzheimer's dementia
4
dementia review
4
review emphasizing
4
emphasizing stereology
4
stereology clinical
4
clinical well
4

Similar Publications

Goji berry (Lycium barbarum L.) is a fruit with high nutritional and medicinal value, widely cultivated in northwest China (Wang et al. 2023).

View Article and Find Full Text PDF

Banana (Musa spp.) is widely cultivated as the major fruit in Pakistan. Anthracnose fruit rot caused by various Colletotrichum spp.

View Article and Find Full Text PDF

Objectives: This systematic review and meta-analysis (SRM) evaluated the effect of incorporating calcium-based bioactive agents in bleaching gels on dental structure preservation and whitening efficacy.

Methods: A comprehensive search was conducted across databases up to November 2024. Two independent reviewers screened and selected clinical trials and in vitro studies evaluating the effects of calcium-based bioactive agents in bleaching gels, following predefined PICO criteria.

View Article and Find Full Text PDF

Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Extract and Their Separation Properties in Lubricant-Water Emulsions.

Nanomaterials (Basel)

March 2025

Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.

The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.

View Article and Find Full Text PDF

Sn-doped TiO-carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal-support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/TiSnO-C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!