A study of the internal dynamics of an LNA/DNA:RNA duplex has been performed to further characterize the conformational changes associated with the incorporation of locked nucleic acid (LNA) nucleotides in a DNA:RNA duplex. In general, it was demonstrated that the LNA/DNA:RNA duplex has a very high degree of order compared to dsDNA and dsRNA duplexes. The order parameters of the aromatic carbon atoms in the LNA/DNA strand are uniformly high, whereas a sharp drop in the degree of order was seen in the RNA strand in the beginning of the AUAU stretch in the middle of the strand. This can be related to a return to normal dsRNA dynamics for the central A:U base pair. The high order of the heteroduplex is consistent with preorganization of the chimera strand for an A-form duplex conformation. These results partly explain the dramatic increase in T(m) of the chimeric heteroduplex over dsDNA and DNA:RNA hybrids of the same sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja051026zDOI Listing

Publication Analysis

Top Keywords

lna/dnarna duplex
12
degree order
8
duplex
5
structure mixed
4
mixed lna/dnarna
4
duplex driven
4
driven conformational
4
conformational coupling
4
coupling lna
4
lna deoxyribose
4

Similar Publications

Carbazole modified oligonucleotides: synthesis, hybridization studies and fluorescence properties.

Org Biomol Chem

September 2020

Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

Synthesis of the novel thiophenyl carbazole phosphoramidite DNA building block 5 was accomplished in four steps using a Suzuki-Miyaura cross-coupling reaction from the core carbazole and it was seamlessly accommodated into a 9-mer DNA-based oligonucleotide by incorporation at the flanking 5'-end in combination with a central insertion of an LNA-T nucleotide. The carbazole-containing oligonucleotide was combined in different duplex hybrids, which were characterized by thermal denaturation, circular dichroism and fluorescence studies. The carbazole monomer modulates the duplex stability in various ways.

View Article and Find Full Text PDF

Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides.

J Chem Theory Comput

November 2019

Department of Biomedical Engineering , The University of Texas at Austin, Austin , Texas 78712 , United States.

MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

There is an extensive research carrying out on antisense technology and the molecules entering into clinical trials are increasing rapidly. Phosphorothioate (PS) is a chemical modification in which nonbridged oxygen is replaced with a sulfur, consequently providing resistance against nuclease activity. The 2'-4' conformationally restricted nucleoside has the structural features of both 2'-O-methoxy ethyl RNA (MOE), which shows good toxicity profile, and locked nucleic acid (LNA), which shows good binding affinity towards the target RNA.

View Article and Find Full Text PDF

Heteroduplex oligonucleotides (HDOs), composed of a DNA/LNA gapmer and its complementary RNA, are a novel, promising candidates for antisense drugs. We previously reported oligodiaminogalactoses (ODAGals), designed to bind to A-type nucleic acid duplexes such as DNA/RNA and RNA/RNA duplexes. In this paper, we report oligodiguanidinogalactoses (ODGGals) as novel A-type duplex binding molecules.

View Article and Find Full Text PDF

We designed and synthesized a novel artificial 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA/LNA) with a phenoxazine nucleobase and named this compound BNAP. Oligodeoxynucleotide (ODN) containing BNAP showed higher binding affinities toward complementary DNA and RNA as compared to ODNs bearing 2',4'-BNA/LNA with 5-methylcytosine or 2'-deoxyribonucleoside with phenoxazine. Thermodynamic analysis revealed that BNAP exhibits properties associated with the phenoxazine moiety in DNA/DNA duplexes and characteristics associated with the 2',4'-BNA/LNA moiety in DNA/RNA duplexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!