A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of cyclamen mite (Phytonemus pallidus) and leaf beetle (Galerucella tenella) damage on volatile emission from strawberry (Fragaria x ananassa Duch.) plants and orientation of predatory mites (Neoseiulus cucumeris, N. californicus, and Euseius finlandicus). | LitMetric

AI Article Synopsis

  • The study examined how cyclamen mites and leaf beetles affect the volatile emissions of two strawberry cultivars (Polka and Honeoye).
  • Damage from cyclamen mites increased the emission of green leaf volatiles and methyl salicylate, while leaf beetles boosted emissions of various terpenes and a homoterpene.
  • Despite these changes in volatile profiles, predatory mites were not attracted to the herbivore-damaged plants, indicating that the emitted volatiles do not lure these predators.

Article Abstract

Volatile emission profile of strawberry (Fragaria x ananassa Duch.) plants (cvs. Polka and Honeoye) damaged by cyclamen mite (Phytonemus pallidus Banks) or leaf beetle Galerucella tenella (L.) (cv. Polka) was analyzed to determine the potential of these strawberry plants to emit herbivore-induced volatiles. The total volatile emissions as well as emissions of many green leaf volatiles (e.g., (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate) and methyl salicylate were greater from cyclamen mite-damaged strawberry plants than from intact plants. Leaf beetle feeding increased emissions of monoterpenes (Z)-ocimene and (E)-beta-ocimene, sesquiterpenes (E)-beta-caryophyllene, (E,E)-alpha-farnesene, and germacrene-D, and a homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) significantly. Nevertheless, the naïve generalist predatory mites, Neoseiulus cucumeris, Neoseiulus californicus, and Euseius finlandicus did not prefer P. pallidus- or G. tenella-damaged plants over intact plants in a Y-tube olfactometer, suggesting that these predatory mite species are not attracted by the herbivore-induced volatiles being released from young strawberry plants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf050676jDOI Listing

Publication Analysis

Top Keywords

leaf beetle
12
strawberry plants
12
cyclamen mite
8
mite phytonemus
8
phytonemus pallidus
8
beetle galerucella
8
galerucella tenella
8
volatile emission
8
strawberry fragaria
8
fragaria ananassa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!