Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions -3 and -2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43deltaI382) or the last five amino acids (Cx43delta378-382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43deltaI382 and Cx43 delta378-382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880920 | PMC |
http://dx.doi.org/10.1080/15419060490951781 | DOI Listing |
Int J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFBone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
Gap junctions (GJs) play a pivotal role in intercellular communication between eukaryotic cells, including transfer of biomolecules that contribute to the innate and adaptive immune response. However, if and how viruses affect gap junction intercellular communication (GJIC) remains largely unexplored. Here, we describe how the alphaherpesvirus pseudorabies virus (PRV) triggers ERK1/2-mediated phosphorylation of the main gap junction component connexin 43 (Cx43) and closure of GJIC, which depends on the viral protein pUL46.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China. Electronic address:
Adv Healthc Mater
January 2025
Department of Biochemistry and Molecular and Cellular Biology, School of Medicine, Georgetown University, Washington, DC, 20057, USA.
Glucocorticoids (GCs) are standard-of-care treatments for inflammatory and immune disorders, and their long-term use increases the risk of osteoporosis. Although GCs decrease bone functionality, their role in bone microvasculature is incompletely understood. Herein, the study investigates the mechanisms of bone microvascular barrier function via osteoblast-endothelial interactions in response to GCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!