Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200502246DOI Listing

Publication Analysis

Top Keywords

chain elongation
4
elongation macrolactonization
4
macrolactonization hydrolysis
4
hydrolysis natural
4
natural reduced
4
reduced hexaketide
4
hexaketide substrates
4
substrates picromycin/methymycin
4
picromycin/methymycin polyketide
4
polyketide synthase
4

Similar Publications

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Background: Hypoxia triggers stress, leading to significant alterations in gene expression patterns, which in turn affect fish's growth and development. Real-time quantitative PCR (RT-qPCR) is a pivotal technique for assessing changes in gene expression. However, its accuracy is highly contingent upon the stable expression of reference genes.

View Article and Find Full Text PDF

The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.

View Article and Find Full Text PDF

Quality Characteristics and In Vitro Digestibility of Starch Gel in White Noodles Prepared with Short-Chain Glucan Aggregates (SCGA).

Gels

December 2024

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.

Short-chain glucan aggregates (SCGA), a type of resistant starch (RS) Ⅲ, is produced by debranching amylopectin with pullulanase and inducing self-assembly. Despite its low digestibility and high RS content, SCGA has not been applied to real food systems, especially noodles. The objective of this study was to determine the feasibility of low-digestible noodles using SCGA and to evaluate their quality characteristics and in vitro digestibility of starch gel.

View Article and Find Full Text PDF

As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!