Hormonal and sensory inputs regulate distinct neuroblast cell cycle properties in adult cricket brain.

J Neurosci Res

Laboratoire NMDA, UMR 6156, Parc Scientifique de Luminy, Case 907, Marseille, France.

Published: December 2005

From invertebrates to humans, it has been demonstrated that new neurons are added to specific brain structures throughout adult life. In the house cricket, adult neurogenesis occurs in the mushroom bodies, the main sensory integrative center of the brain, often considered an analogue of vertebrate hippocampus. We have previously shown that this neurogenesis can be modulated by hormones through the polyamine pathway and by environmental conditions through sensory inputs and the nitric oxide pathway. Environment-induced neurogenesis is independent of juvenile hormone levels, so we addressed the roles of sensory inputs and hormones in the control of neuroblast proliferation. Here, by using double labelling of cells specifically in S phase (5-bromo-2'-deoxyuridine) together with labelling of mitotically active cells in any phase (proliferating cell nuclear antigen), we show that juvenile hormone acts on progenitor cell proliferation by inducing quiescent neuroblasts to enter the cell cycle, whereas sensory inputs act by shortening the cell cycle. Thus, in the adult house cricket, regulation of neuroblast proliferation by hormonal and environmental cues occurs through two independent modes of action.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20672DOI Listing

Publication Analysis

Top Keywords

sensory inputs
16
cell cycle
12
house cricket
8
juvenile hormone
8
neuroblast proliferation
8
cells phase
8
cell
5
hormonal sensory
4
inputs
4
inputs regulate
4

Similar Publications

Hypothalamic neural circuits regulating energy expenditure.

Vitam Horm

January 2025

Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:

The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.

View Article and Find Full Text PDF

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.

View Article and Find Full Text PDF

Background/objectives: Static upright tasks, including standing unsupported (SU), eyes closed (SEC), feet together (SFT), tandem (TS), and single limb (SLS), are routinely examined in children and are included in many norm-referenced measures. Existing normative values for these standing tasks may not apply to contemporary children and have not been established across wide age ranges. The primary purpose of this study was to investigate developmental trajectories of and relationships between four static standing positions (SPs [SU, SFT, TS, SLS]) in children aged 2 through 13 years who are developing typically.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!