Nicotine has been reported to be neuroprotective in experimental and epidemiological studies. In addition to nicotine, tobacco and cigarette smoke contain cembranoids, which are antagonists of neuronal nicotinic receptors (nAChR). Exposure of hippocampal slices to N-methyl-D-aspartate (NMDA) decreases the population spikes (PS). This parameter has been used as a measure of excitotoxicity. Surprisingly, both nicotine and tobacco cembranoids protected against NMDA and this neuroprotection was not blocked by methyllycaconitine (MLA), an antagonist of alpha7 nAChR. On the contrary, MLA had a neuroprotective effect of its own. We examined the effect of the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R) on the neuroprotection against NMDA. DHbetaE, a selective antagonist of alpha4beta2 nAChR, inhibited the neuroprotection by nicotine, 4R, and MLA, suggesting the involvement of alpha4beta2 nAChRs in the neuroprotection. The cell-signaling pathways underlying the neuroprotection by 4R and by nicotine are different. The activity of phosphatidylinositol-3 kinase (PI3K) was required in both cases; however, 4R required the activity of L-type calcium channels and CAM kinase, whereas nicotine required the extracellular signal regulated kinase-1,2 (ERK) and protein kinase C (PKC). In addition, 4R did not enhance total phospho-ERK-1/2 but increased the amount of total Akt/PKB phosphorylated on the activation site and of glycogen synthase kinase 3-beta phosphorylated on the inhibitory site. Total levels of phosphoenzymes are presented instead of the ratio of phospho- over total enzyme because in preliminary experiments total ERK-1/2 levels were slightly increased by 4R. In conclusion, these findings demonstrate that there are two different nicotinic neuroprotective mechanisms mediated by alpha4beta2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20666DOI Listing

Publication Analysis

Top Keywords

tobacco cembranoids
8
hippocampal slices
8
mediated alpha4beta2
8
nicotinic receptors
8
nicotine tobacco
8
neuroprotection nicotine
8
nicotine
6
neuroprotection
5
total
5
tobacco
4

Similar Publications

Investigating the spatiotemporal expression of genes lead to the discovery of tobacco root as a cembranoid-producing organ.

Front Plant Sci

May 2024

Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.

Tobacco cembranoids, known for their anti-insect and antifungal properties, were shown to be mainly present on the surface of leaves and flowers, being biosynthesized by their trichomes. It remains unclear whether they could be biosynthesized in other organs without trichomes. Cembratrien-ol synthases (CBTSs) catalyze the conversion of GGPP to CBT-ols and thus play an important role in cembranoid biosynthesis.

View Article and Find Full Text PDF

Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131).

View Article and Find Full Text PDF

Phytochemicals derived from L. plant contribute to pharmaceutical development.

Front Pharmacol

April 2024

Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

The L. plant, a medicinal resource, holds significant potential for benefiting human health, as evidenced by its use in Native American and ancient Chinese cultures. Modern medical and pharmaceutical studies have investigated that the abundant and distinctive function metabolites in tobacco including nicotine, solanesol, cembranoid diterpenes, essential oil, seed oil and other tobacco extracts, avoiding the toxic components of smoke, mainly have the anti-oxidation, anti-lipid production, pro-lipid oxidation, pro-insulin sensitivity, anti-inflammation, anti-apoptosis and antimicrobial activities.

View Article and Find Full Text PDF

4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain.

View Article and Find Full Text PDF

Determining the safety of the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-Cembratriene-4,6-diol (4R): A translational study in nonhuman primates.

Toxicol Appl Pharmacol

January 2024

Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Guillermo Arbona, Área de Centro Médico Río Piedras, PR 00935, USA. Electronic address:

The tobacco cembranoid known as (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (4R) has been shown to offer neuroprotection against conditions such as brain ischemia, systemic inflammation, Parkinson's disease, and organophosphate toxicity in rodents. Previous safety studies conducted on male and female Sprague Dawley rats revealed no significant side effects following a single injection of 4R at varying concentrations (6, 24, or 98 mg/kg of body weight). This study aimed to assess the potential of 4R for clinical trials in neurotherapy in male nonhuman primates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!