Osmotic shock, oxidative stress and Cl- removal activate a non-selective Ca2+-permeable cation conductance in human erythrocytes. The entry of Ca2+ leads to activation of a scramblase with subsequent exposure of phosphatidylserine at the cell surface. Phosphatidylserine mediates binding to phosphatidylserine receptors on macrophages which engulf and degrade phosphatidylserine exposing cells. Moreover, phosphatidylserine exposure may lead to adherence of erythrocytes to the vascular wall. In the present study, we explored whether activation of the non-selective cation conductance and subsequent phosphatidylserine exposure might be influenced by catecholamines. Phosphatidylserine exposure has been determined by FITC-annexin V binding while cell volume was estimated from forward scatter in FACS analysis. Removal of Cl- enhanced annexin binding and decreased forward scatter, an effect significantly blunted by the beta agonist isoproterenol (IC50 approx. 1 microM). Fluo-3 fluorescence measurements revealed an increase of cytosolic Ca2+ activity following Cl- removal, an effect again significantly blunted by isoproterenol exposure (10 microM). Whole-cell patch-clamp experiments performed in Cl- free bath solution indeed disclosed a time-dependent inactivation of a non-selective cation conductance following isoproterenol exposure (10 microM). Phenylephrine (IC50<10 microM), dobutamine (IC50 approx. 1 microM) and dopamine (IC50 approx. 3 microM) similarly inhibited the effect of Cl- removal on annexin binding and forward scatter. In conclusion, several catecholamines inhibit the Cl- removal-activated Ca2+ entry into erythrocytes, thus preventing increase of cytosolic Ca2+ activity, subsequent cell shrinkage and activation of erythrocyte scramblase. The catecholamines thus counteract erythrocyte phosphatidylserine exposure and subsequent clearance of erythrocytes from circulating blood.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-005-0009-2DOI Listing

Publication Analysis

Top Keywords

cation conductance
12
phosphatidylserine exposure
12
cl- removal
8
non-selective cation
8
forward scatter
8
isoproterenol exposure
8
exposure microm
8
phosphatidylserine
7
exposure
6
inhibition erythrocyte
4

Similar Publications

Open frameworks in the NaMn(PO)F fluoro-pyrophosphates system.

Dalton Trans

January 2025

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.

Three new sodium manganese fluoro-pyrophosphate compounds, namely, NaMn(PO)F (I), NaMn(PO)F (II), and NaMn(PO)F (III), have been synthesized by heating a mixture of NaPF, NaPOF or NaHPO with different Mn sources in NaNO and KNO fluxes. The structures of the title compounds were characterized single-crystal X-ray diffraction (XRD). II is characteristic of a shell of Na ions that encloses one [Mn(PO)F] unit, whereas I and III reveal three-dimensional (3D) frameworks that consist of MnO, Mn/NaOF octahedra or MnO octahedra and distorted MnO square pyramids with PO units, where Na cations reside in different-membered ring one-dimensional (1D) tunnels.

View Article and Find Full Text PDF

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.

View Article and Find Full Text PDF

Designing sustainable soil conditioners: Nanocomposite-based thermoplastic starch for enhanced soil health and crop performance.

Int J Biol Macromol

January 2025

Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:

The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!