TFAR19 gene changes the biophysical properties of murine erythroleukemia cells.

Cell Biochem Biophys

Department of Biophysics, Health Science Center, Peking University, Beijing 100083, P. R. China.

Published: February 2006

TFAR19 is a novel apoptosis-related gene and can accelerate cell apoptosis in the presence of apoptosis inducements. Here, we studied the effects of TFAR19 on some biophysical properties of mouse erythroleukemia (MEL) cells and their molecular and structural basis. After transfected with TFAR19 and apoptosis inducement, MEL revealed a high cell membrane fluidity, a decrease in resynthesis of phospholipids, an increase in the proteins/nucleic acids ratio, a relatively orderly cytoskeleton network, an impaired deformability, a low integrin aM expression, and a decrease in adhesion to endothelial cells. These findings suggest the potential of TFAR19 for antitumor cell migration, and thus for antitumor gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1385/CBB:43:3:355DOI Listing

Publication Analysis

Top Keywords

biophysical properties
8
tfar19
5
tfar19 gene
4
gene changes
4
changes biophysical
4
properties murine
4
murine erythroleukemia
4
erythroleukemia cells
4
cells tfar19
4
tfar19 novel
4

Similar Publications

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.

View Article and Find Full Text PDF

: The rise of drug-resistant strains presents a significant challenge in the treatment of Leishmaniasis, a neglected tropical disease. Extracellular vesicles (EVs) produced by these parasites have gained attention for their role in drug resistance and host-pathogen interactions. : This study developed and applied a novel lipidomics workflow to explore the lipid profiles of EVs from three types of drug-resistant strains compared to a wild-type strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!