Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) catalyzes a rate-limiting step in photosynthetic carbon assimilation (reacting with CO2) and its competitive photo-respiratory carbon oxidation (reacting with O2). RuBisCo enzyme with an enhanced CO2/O2 specificity would boost the ability to make great progress in agricultural production and environmental management. RuBisCos in marine non-green algae, resulting from an earlier endo-symbiotic event, diverge greatly from those in green plants and cyanobacteria and, further, have the highest CO2/O2 specificity whereas RuBisCos in cyanobacteria have the lowest. We assumed that there exist different levels of CO2/O2 specificity-determining factors, corresponding to different evolutionary events and specificity levels. Based on this assumption, we devised a scheme to identify these substrate-determining factors. From this analysis, we are able to discover different categories of the CO2/O2 specificity-determining factors that show which residue substitutions account for (relatively) small specificity changes, as happened in green plants, or a tremendous enhancement, as observed in marine non-green algae. Therefore, the analysis can improve our understanding of molecular mechanisms in the substrate specificity development and prioritize candidate specificity-determining surface residues for site-directed mutagenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzi065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!