Unlabelled: Direct intramyocardial injection of mesenchymal stem cells (MSCs) improves left ventricular ejection fraction (LVEF) and may increase ventricular arrhythmia in hearts with myocardial infarction (MI). We hypothesized that intravenous MSCs given early after acute MI would engraft in injured myocardium, improve LV function, and result in pro-arrhythmic electrical remodeling. We created an apical infarction in swine by balloon occlusion/reperfusion, administered diI-labeled allogeneic bone marrow derived MSCs intravenously 30 min post-reperfusion and measured LVEF and wall thickness at baseline, 1 month, and 3 months. Epicardial effective refractory periods (ERPs) were determined before sacrifice. At 3 months, treated pigs [n=7] had significantly higher LVEF than controls [n=8] (49+/-2% vs. 44+/-3%, P=0.015) and significantly less wall thickening of non-infarcted myocardium. ERPs were significantly shorter than controls at all pacing cycle lengths (P
Conclusion: IV infusion of MSCs soon after acute MI in swine improves LVEF and limits wall thickening in the remote non-infarcted myocardium, consistent with a beneficial effect on post-MI ventricular remodeling. Since there is no need for immune suppression or clinical expertise, IV infusion of MSCs may expand the potential clinical application of stem cell therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2005.07.036 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 15, Changle West Road, Xi'an, 710032, Shaanxi, China.
Background And Objective: Adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASCs-Exos) possess angiogenic potential, which can enhance the retention rate of fat grafts. Hypoxic preconditioning can augment their functionality. However, the optimal conditions for hypoxic preconditioning and the specific mechanisms by which it exerts its effects are not well defined.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.
Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFWe studied the effect of reprogrammed CD8 T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!