Using in situ hybridization, RNase protection assay and Western blot, we studied the effects of ethanol on the expression levels of GABA(B) receptor mRNA and protein in the cortex and hippocampus from adult rat brain. The results showed that ethanol significantly increased GABA(B1) and GABA(B2) receptor protein expression in the cortex, whereas only GABA(B2) was increased in the hippocampus. GABA(B) receptor agonist baclofen could partially reverse the effect of ethanol. Further studies of the mRNA levels defined that GABA(B1) mRNA levels were significantly increased in the hippocampus, with no significant changes of GABA(B2) mRNA levels. Moreover, GABA(B1) and GABA(B2) receptor mRNA levels were increased on 3-week ethanol treatment. Finally, GABA(B) agonist baclofen and antagonist phaclofen showed significant decreasing effects on GABA(B1) receptor mRNA levels in the cortex, but not in the hippocampus. These results were further confirmed by in situ hybridization. Thus, the present results showed the effects of ethanol on GABA(B) receptors in the cortex and hippocampus, implying the possible role of GABA(B) receptor in ethanol effects. The effects of GABA(B) receptor agonist and antagonist suggested that the possible mechanisms underlying that GABA(B) receptor modulated the behavioral effect induced by ethanol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2005.08.052 | DOI Listing |
Drug Res (Stuttg)
January 2025
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
G protein-coupled receptors (GPCRs) play central roles in regulating cellular responses through heterotrimeric G proteins (GP). Extensive studies have elucidated the complex cellular signaling mediated by GPCRs that accompany dynamic conformational changes upon activation. However, there has been less focus on the role of the GP on the activation process, particularly for class C GPCRs that function as obligate dimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!