The design of oligonucleotides for gene silencing requires a rational method for identifying hybridization-accessible sequences within the target RNA. To this end, we have developed stem-loop self-quenching reporter molecules (SQRMs) as probes for such sequence. SQRMs have a 5' fluorophore, a quenching moiety on the 3' end, an intervening sequence that forms an approximately 5-basepaired stem, and a loop sequence of approximately 20-30 bases. We have previously described a mapping strategy employing SQRMs to locate stem-loop structures in the target mRNA molecule. We now show that the original design constraint of a basepaired stem is not needed, either in vitro or in vivo. We propose that stemless probes possess sufficient signal-to-noise for use in vivo and that this ratio is an indication of hybridization of the probe to its target. Data showing that these SQRMs can specifically target and reduce c-Myb protein synthesis and can be used for real-time in vivo assays are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2005.08.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!