Calmodulin (CaM) is a ubiquitous Ca(2+) sensor found in all eukaryotes, where it participates in the regulation of diverse calcium-dependent physiological processes. In response to fluctuations of the intracellular concentration of Ca(2+), CaM binds to a set of unrelated target proteins and modulates their activity. In plants, a growing number of CaM-binding proteins have been identified that apparently do not have a counterpart in animals. Some of these plant-specific Ca(2+)/CaM-activated proteins are known to tune the interaction between calcium and H(2)O(2) in orchestrating plant defenses against biotic and abiotic stresses. We previously characterized a calcium-dependent peroxidase isolated from the latex of the Mediterranean shrub Euphorbia characias (ELP) [Medda et al. (2003) Biochemistry 42, 8909-8918]. Here we report the cDNA nucleotide sequence of Euphorbia latex peroxidase, showing that the derived protein has two distinct amino acid sequences recognized as CaM-binding sites. The cDNA encoding for an E. characias CaM was also found and sequenced, and its protein product was detected in the latex. Results obtained from different CaM-binding assays and the determination of steady-state parameters showed unequivocally that ELP is a CaM-binding protein activated by the Ca(2+)/CaM system. To the best of our knowledge, this is the first example of a peroxidase regulated by this classic signal transduction mechanism. These findings suggest that peroxidase might be another node in the Ca(2+)/H(2)O(2)-mediated plant defense system, having both positive and negative effects in regulating H(2)O(2) homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0513251DOI Listing

Publication Analysis

Top Keywords

euphorbia latex
8
plant defenses
8
ca2+/calmodulin-binding peroxidase
4
peroxidase euphorbia
4
latex
4
latex novel
4
novel aspects
4
aspects calcium-hydrogen
4
calcium-hydrogen peroxide
4
peroxide cross-talk
4

Similar Publications

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

The genus Euphorbia, belonging to the family Euphorbiaceae, represents a significant ethnobotanical heritage due to the diverse bioactive properties exhibited. In this study, the phytochemical composition and biological activities of latex and aerial parts of the water extract of Euphorbia gaillardotii were investigated. Phytochemical analyses were performed using gas chromatography-mass spectrometry and high-performance liquid chromatography techniques and total antioxidants, phenolics, sugars, organic acids, and aroma components were quantitatively determined.

View Article and Find Full Text PDF

In Vitro Evaluation of the Anti-Chikungunya Virus Activity of an Active Fraction Obtained from Latex.

Viruses

December 2024

Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.

Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .

View Article and Find Full Text PDF

This study investigates the wound-healing potential of Euphorbia guyoniana latex (EGL) in male Wistar rats, along with its biochemical composition and biological activities. Phytochemical analysis identified moderate levels of phenolics, flavonoids, and tannins, with HPLC revealing five phenolic compounds. EGL demonstrated strong antioxidant activity in DPPH assays, surpassing ascorbic acid in protecting red blood cells.

View Article and Find Full Text PDF

Products derived from the latex of were obtained through hydrolysis and column chromatography, resulting in products rich in triterpenes, ingenol 3-esters (I3E), and other derivatives from hydrolysed latex. These products underwent evaluation for their cytotoxic activity against gastric adenocarcinoma cells (AGS). Triterpene derivatives were synthesised, and the selectivity of each product was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!