We have cloned the chicken and mouse orthologues of the Caenorhabditis elegans heterochronic gene lin-41. During limb development, lin-41 is expressed in three phases over developmental time and most notably is associated with the developing autopod. Using chicken and mouse mutants and bead implantations, we report that lin-41 is genetically and biochemically downstream of both the Shh and Fgf signaling pathways. In C. elegans, it is proposed that lin-41 activity is temporally regulated by miRNAs (let-7 and lin-4) that bind to complementary sites in the lin-41 3'-untranslated region (UTR). Taking a bioinformatics approach, we also report the presence of potential miRNA binding sites in the 3'-UTR of chicken lin-41, including sites for the chicken orthologues of both C. elegans let-7 and lin-4. Finally, we show that these miRNAs and others are expressed in the chick limb consistent with the hypothesis that they regulate chicken Lin-41 activity in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20591DOI Listing

Publication Analysis

Top Keywords

lin-41
8
limb development
8
chicken mouse
8
lin-41 activity
8
let-7 lin-4
8
chicken lin-41
8
chicken
5
analysis regulation
4
regulation lin-41
4
lin-41 chick
4

Similar Publications

The thermal stabilities of DNA duplexes analogous to the microRNA: mRNA complex from have been measured by free solution capillary electrophoresis. DNA duplexes with the same stems but different types of internal or bulge loops and a control with no loop have also been studied. The melting temperatures of the DNA derivatives increased linearly with the logarithm of the Na or K ion concentration in the solution.

View Article and Find Full Text PDF

A temporal sequence of heterochronic gene activities promotes stage-specific developmental events in Caenorhabditis elegans.

G3 (Bethesda)

August 2024

Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ 08084, USA.

The heterochronic genes of the nematode Caenorhabditis elegans control the succession of postembryonic developmental events. The 4 core heterochronic genes lin-14, lin-28, hbl-1, and lin-41 act in a sequence to specify cell fates specific to each of the 4 larval stages. It was previously shown that lin-14 has 2 activities separated in time that promote L1 and L2 developmental events, respectively.

View Article and Find Full Text PDF

Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is one of the most common reasons for paediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate congenital hydrocephalus risk gene; however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated congenital hydrocephalus (totalling 2697 parent-proband trios and 8091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, congenital hydrocephalus, developmental delay, dysmorphic features and other structural brain defects, including corpus callosum dysgenesis and white matter hypoplasia.

View Article and Find Full Text PDF

The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression.

View Article and Find Full Text PDF

Tripartite motif-containing protein 32 (TRIM32) is a member of the tripartite motif family and is highly conserved from flies to humans. Via its E3 ubiquitin ligase activity, TRIM32 mediates and regulates many physiological and pathophysiological processes, such as growth, differentiation, muscle regeneration, immunity, and carcinogenesis. TRIM32 plays multifunctional roles in the maintenance of skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!