Nkx2-5 gene mutations cause cardiac abnormalities, including deficits of function in the atrioventricular conduction system (AVCS). In the chick, Nkx2-5 is elevated in Purkinje fiber AVCS cells relative to working cardiomyocytes. Here, we show that Nkx2-5 expression rises to a peak as Purkinje fibers progressively differentiate. To disrupt this pattern, we overexpressed Nkx2-5 from embryonic day 10, as Purkinje fibers are recruited within developing chick hearts. Overexpression of Nkx2-5 caused inhibition of slow tonic myosin heavy chain protein (sMHC), a late Purkinje fiber marker but did not affect Cx40 levels. Working cardiomyocytes overexpressing Nkx2-5 in these hearts ectopically up-regulated Cx40 but not sMHC. Isolated embryonic cardiomyocytes overexpressing Nkx2-5 also displayed increased Cx40 and suppressed sMHC. By contrast, overexpression of a human NKX2-5 mutant did not effect these markers in vivo or in vitro, suggesting one possible mechanism for clinical phenotypes. We conclude that a prerequisite for normal Purkinje fiber maturation is precise regulation of Nkx2-5 levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610391 | PMC |
http://dx.doi.org/10.1002/dvdy.20580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!