The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b.

Photosynth Res

Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, Canberra, P.O. Box 1600, ACT 2601, Australia.

Published: January 2002

Over the last half century, the most frequently used assay for chlorophylls in higher plants and green algae, the Arnon assay [Arnon DI (1949) Plant Physiol 24: 1-15], employed simultaneous equations for determining the concentrations of chlorophylls a and b in aqueous 80% acetone extracts of chlorophyllous plant and algal materials. These equations, however, were developed using extinction coefficients for chlorophylls a and b derived from early inaccurate spectrophotometric data. Thus, Arnon's equations give inaccurate chlorophyll a and b determinations and, therefore, inaccurate chlorophyll a/b ratios, which are always low. This paper describes how the ratios are increasingly and alarmingly low as the proportion of chlorophyll a increases. Accurate extinction coefficients for chlorophylls a and b, and the more reliable simultaneous equations derived from them, have been published subsequently by many research groups; these new post-Arnon equations, however, have been ignored by many researchers. This Minireview records the history of the development of accurate simultaneous equations and some difficulties and anomalies arising from the retention of Arnon's seriously flawed equations.

Download full-text PDF

Source
http://dx.doi.org/10.1023/A:1020470224740DOI Listing

Publication Analysis

Top Keywords

simultaneous equations
16
history development
8
equations
8
extinction coefficients
8
coefficients chlorophylls
8
inaccurate chlorophyll
8
chlorophylls
5
chequered history
4
simultaneous
4
development simultaneous
4

Similar Publications

The dissolution/diffusion process of solid in a liquid is a kind of widespread physical phenomenon. Parameters involved in this process include the dissolution rate (), dissolution rate constant (), and diffusion coefficient (), whose accurate measurement is particularly important in fields such as biopharmaceuticals, materials science, agriculture, etc. However, the commonly used measurement methods at present cannot obtain these parameters simultaneously.

View Article and Find Full Text PDF

In this research, fully biobased composites consisting of poly(butylene 2,5-furandicarboxylate) (PBF) and cellulose nanocrystals (CNC) were successfully prepared through a common solution and casting method. The influence of CNC on the crystallization behavior, mechanical property, and hydrophilicity of PBF was systematically investigated. Under different crystallization processes, the crystallization of PBF was obviously promoted by CNC as a biobased nucleating agent.

View Article and Find Full Text PDF

Sugar-sweetened beverages (SSBs) and cigarettes are addictive substances and addictive substances are often related in consumption with each other. However, the potential interdependence between SSB and cigarette consumption has not been explored in the literature. As SSB and cigarette consumption have posed a great threat to individual health, the knowledge of such interdependence is critical for policymakers to design and coordinate government interventions.

View Article and Find Full Text PDF

Random Frequency Division Multiplexing.

Entropy (Basel)

December 2024

The School of Electric Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China.

In this paper, we propose a random frequency division multiplexing (RFDM) method for multicarrier modulation in mobile time-varying channels. Inspired by compressed sensing (CS) technology which use a sensing matrix (with far fewer rows than columns) to sample and compress the original sparse signal simultaneously, while there are many reconstruction algorithms that can recover the original high-dimensional signal from a small number of measurements at the receiver. The approach choose the classic sensing matrix of CS-Gaussian random matrix to compress the signal.

View Article and Find Full Text PDF

Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!