Aims: Tamm-Horsfall protein (THP) is urine's most abundant protein, but its biological function has remained elusive. Recently, THP-deficient (THP(-/-)) mice were shown to have difficulty clearing Escherichia coli from the urinary bladder. It has remained unclear if interaction between THP and E. coli is specific for E. coli or if THP has a versatile ability to clear a variety of bacteria from the bladder, and act as a broad host-defense mechanism against urinary tract infection (UTI). In this study, we examined the role of THP as a protective factor against UTI caused by bacteria other than E. coli, namely Klebsiella pneumoniae and Staphylococcus saprophyticus by determining if the THP(-/-) mouse has difficulty clearing these bacteria from its bladder.

Methods: THP gene knockout mice were generated by the technique of homologous recombination. K. pneumoniae and S. saprophyticus were introduced transurethrally, in separate experiments, into the bladders of the THP(-/-) and genetically similar wild-type (THP(+/+)) mice. Urine was collected at periodic intervals and cultured to quantitate the degree of bacteriuria. Bladders were surgically removed and examined histomorphometrically to determine the intensity of inflammation.

Results: Results showed that both with K. pneumoniae and with S. saprophyticus, the THP(-/-) mice had more severe bacteriuria in comparison with THP(+/+) mice. The inflammatory changes in the bladder were also markedly more intense in THP(-/-) mice with each of the bacterial species.

Conclusions: These findings support the hypothesis that THP helps eliminate K. pneumoniae and S. saprophyticus from the urinary tract and acts as a general host-defense factor against UTI.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000088990DOI Listing

Publication Analysis

Top Keywords

thp-/- mice
12
pneumoniae saprophyticus
12
tamm-horsfall protein
8
acts general
8
general host-defense
8
host-defense factor
8
difficulty clearing
8
urinary tract
8
factor uti
8
thp+/+ mice
8

Similar Publications

Targeting macrophage circadian rhythms with microcurrent stimulation to activate cancer immunity through phagocytic defense.

Theranostics

January 2025

Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.

Macrophage phagocytosis plays a role in cancer immunotherapy. The phagocytic activity of macrophages, regulated by circadian clock genes, shows time-dependent variation. Intervening in the circadian clock machinery of macrophages is a potentially novel approach to cancer immunotherapy; however, data on this approach are scarce.

View Article and Find Full Text PDF

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

J Exp Clin Cancer Res

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.

View Article and Find Full Text PDF

Emodin Suppresses NLRP3/GSDMD-induced Inflammation via the TLR4/MyD88/NF-κB Signaling Pathway in Atherosclerosis.

Cardiovasc Drugs Ther

December 2024

Department of Cardiology, Panvascular Disease Management Center (PDMC), Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, WenZhou, ZheJiang, China.

Purpose: Inflammatory responses induced by NLRP3 inflammasome contribute to the progression of atherosclerosis. This study seeks to investigate the effect of emodin on the NLRP3 inflammasome in atherogenesis and to probe the underlying mechanism.

Methods: ApoE-knockout (ApoE) mice were treated with a high-fat diet (HFD) for 12 weeks and intragastrically with emodin for 6 weeks.

View Article and Find Full Text PDF

Neohesperidin Dihydrochalcone Alleviates Lipopolysaccharide-Induced Vascular Endothelium Dysfunction by Regulating Antioxidant Capacity.

Immun Inflamm Dis

December 2024

Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Article Synopsis
  • - This study investigates the impact of neohesperidin dihydrochalone (NHDC) on endothelial dysfunction caused by sepsis, specifically how it can counteract the damaging effects of lipopolysaccharide (LPS) on blood vessels.
  • - Researchers conducted various in vivo and in vitro tests to evaluate NHDC's effectiveness in alleviating vascular leakage, enhancing cell survival, and improving antioxidant responses in human umbilical vein endothelial cells (HUVECs).
  • - Results showed that NHDC significantly reduced inflammation and oxidative stress by inhibiting harmful cytokines and signaling pathways, suggesting its potential as a protective treatment for vascular dysfunction related to sepsis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!